1
|
Tsay JS, Asmerian H, Germine LT, Wilmer J, Ivry RB, Nakayama K. Large-scale citizen science reveals predictors of sensorimotor adaptation. Nat Hum Behav 2024; 8:510-525. [PMID: 38291127 DOI: 10.1038/s41562-023-01798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Sensorimotor adaptation is essential for keeping our movements well calibrated in response to changes in the body and environment. For over a century, researchers have studied sensorimotor adaptation in laboratory settings that typically involve small sample sizes. While this approach has proved useful for characterizing different learning processes, laboratory studies are not well suited for exploring the myriad of factors that may modulate human performance. Here, using a citizen science website, we collected over 2,000 sessions of data on a visuomotor rotation task. This unique dataset has allowed us to replicate, reconcile and challenge classic findings in the learning and memory literature, as well as discover unappreciated demographic constraints associated with implicit and explicit processes that support sensorimotor adaptation. More generally, this study exemplifies how a large-scale exploratory approach can complement traditional hypothesis-driven laboratory research in advancing sensorimotor neuroscience.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Hrach Asmerian
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ken Nakayama
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
van der Kooij K, In 't Veld L, Hennink T. Motivation as a function of success frequency. MOTIVATION AND EMOTION 2021; 45:759-768. [PMID: 34608344 PMCID: PMC8482356 DOI: 10.1007/s11031-021-09904-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/03/2022]
Abstract
It is well-established that intermediate challenge is optimally motivating. We tested whether this can be quantified into an inverted-U relationship between motivation and success frequency. Participants played a game in which they navigated a scene to catch targets. In Experiment 1 (N = 101), play duration was free and the motivating value of success frequency was measured from the probability that a player would continue at that frequency. In Experiment 2 (N = 70), play duration was fixed, and motivation was measured using repeated self-reports. In Experiment 1, the probability to continue increased linearly with the success frequency whereas play duration did show the inverted-U relationship with success frequency. In Experiment 2, self-reported motivation showed the inverted-U relationship with success frequency. Together, this shows that motivation depends on success frequency. In addition, we provide tentative evidence that the concept of intermediate challenge being most motivating can be quantified into an inverted-U relationship between motivation and success frequency.
Collapse
Affiliation(s)
- Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9-1, 1081BT Amsterdam, The Netherlands
| | - Lars In 't Veld
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9-1, 1081BT Amsterdam, The Netherlands
| | - Thomas Hennink
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9-1, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hamel R, Côté K, Matte A, Lepage JF, Bernier PM. Rewards interact with repetition-dependent learning to enhance long-term retention of motor memories. Ann N Y Acad Sci 2019; 1452:34-51. [PMID: 31294872 DOI: 10.1111/nyas.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
The combination of behavioral experiences that enhance long-term retention remains largely unknown. Informed by neurophysiological lines of work, this study tested the hypothesis that performance-contingent monetary rewards potentiate repetition-dependent forms of learning, as induced by extensive practice at asymptote, to enhance long-term retention of motor memories. To this end, six groups of 14 participants (n = 84) acquired novel motor behaviors by adapting to a gradual visuomotor rotation while these factors were manipulated. Retention was assessed 24 h later. While all groups similarly acquired the novel motor behaviors, results from the retention session revealed an interaction indicating that rewards enhanced long-term retention, but only when practice was extended to asymptote. Specifically, the interaction indicated that this effect selectively occurred when rewards were intermittently available (i.e., 50%), but not when they were absent (i.e., 0%) or continuously available (i.e., 100%) during acquisition. This suggests that the influence of rewards on extensive practice and long-term retention is nonlinear, as continuous rewards did not further enhance retention as compared with intermittent rewards. One possibility is that rewards' intermittent availability allows to maintain their subjective value during acquisition, which may be key to potentiate long-term retention.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kathleen Côté
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexia Matte
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
4
|
Westcott R, Ronan K, Bambrick H, Taylor M. Public health and natural hazards: new policies and preparedness initiatives developed from an Australian bushfire case study. Aust N Z J Public Health 2019; 43:395-400. [DOI: 10.1111/1753-6405.12897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Rachel Westcott
- Translational Health Research Institute, School of MedicineWestern Sydney University Sydney New South Wales
- Bushfire and Natural Hazards Cooperative Research Centre Melbourne Victoria
| | - Kevin Ronan
- Bushfire and Natural Hazards Cooperative Research Centre Melbourne Victoria
- School of Health, Medical and Applied SciencesCentral Queensland University Rockhampton Queensland
| | - Hilary Bambrick
- School of Public Health and Social WorkQueensland University of Technology Brisbane Queensland
| | - Melanie Taylor
- Bushfire and Natural Hazards Cooperative Research Centre Melbourne Victoria
- Department of PsychologyMacquarie University Sydney New South Wales
| |
Collapse
|
5
|
van der Kooij K, van Dijsseldonk R, van Veen M, Steenbrink F, de Weerd C, Overvliet KE. Gamification as a Sustainable Source of Enjoyment During Balance and Gait Exercises. Front Psychol 2019; 10:294. [PMID: 30881322 PMCID: PMC6405433 DOI: 10.3389/fpsyg.2019.00294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
We may be motivated to engage in a certain motor activity because it is instrumental to obtaining reward (e.g., money) or because we enjoy the activity, making it intrinsically rewarding. Enjoyment is related to intrinsic motivation which is considered to be a durable form of motivation. Therefore, many rehabilitation programs aim to increase task enjoyment by adding game elements ("gamification"). Here we ask how the influence of game elements on motivation develops over time and additionally explore whether enjoyment influences motor performance. We describe two different studies that varied game elements in different exercises. Experiment 1 compared the durability of enjoyment for a gamified and a conventional balance exercise in elderly. Experiment 2 addressed the question whether adding game elements to a gait adaptability exercise enhances the durability of enjoyment and additionally tested whether the game elements influenced movement vigor and accuracy (motor performance). The results show that the game elements enhanced enjoyment. Enjoyment faded over time, but this decrease tended to be less pronounced in gamified exercises. There was no evidence that the game elements affected movement vigor or accuracy.
Collapse
Affiliation(s)
- Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rosanne van Dijsseldonk
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Research, Sint Maartenskliniek, Nijmegen, Netherlands
| | - Milou van Veen
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Krista E. Overvliet
- Department of Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Leow LA, Marinovic W, de Rugy A, Carroll TJ. Task errors contribute to implicit aftereffects in sensorimotor adaptation. Eur J Neurosci 2018; 48:3397-3409. [PMID: 30339299 DOI: 10.1111/ejn.14213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/30/2023]
Abstract
Perturbations of sensory feedback evoke sensory prediction errors (discrepancies between predicted and actual sensory outcomes of movements), and reward prediction errors (discrepancies between predicted rewards and actual rewards). When our task is to hit a target, we expect to succeed in hitting the target, and so we experience a reward prediction error if the perturbation causes us to miss it. These discrepancies between intended task outcomes and actual task outcomes, termed "task errors," are thought to drive the use of strategic processes to restore success, although their role is incompletely understood. Here, as participants adapted to a 30° rotation of cursor feedback representing hand position, we investigated the role of task errors in sensorimotor adaptation: during target-reaching, we either removed task errors by moving the target mid-movement to align with cursor feedback of hand position, or enforced task error by moving the target away from the cursor feedback of hand position, by 20-30° randomly (clockwise in half the trials, counterclockwise in half the trials). Removing task errors not only reduced the extent of adaptation during exposure to the perturbation, but also reduced the amount of post-adaptation aftereffects that persisted despite explicit knowledge of the perturbation removal. Hence, task errors contribute to implicit adaptation resulting from sensory prediction errors. This suggests that the system which predicts the sensory consequences of actions via exposure to sensory prediction errors is also sensitive to reward prediction errors.
Collapse
Affiliation(s)
- Li-Ann Leow
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | | | - Aymar de Rugy
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR 5287, Université de Bordeaux, St Lucia, France
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Pharmacological Dopamine Manipulation Does Not Alter Reward-Based Improvements in Memory Retention during a Visuomotor Adaptation Task. eNeuro 2018; 5:eN-NRS-0453-17. [PMID: 30027109 PMCID: PMC6051592 DOI: 10.1523/eneuro.0453-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/14/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
Motor adaptation tasks investigate our ability to adjust motor behaviors to an ever-changing and unpredictable world. Previous work has shown that punishment-based feedback delivered during a visuomotor adaptation task enhances error-reduction, whereas reward increases memory retention. While the neural underpinnings of the influence of punishment on the adaptation phase remain unclear, reward has been hypothesized to increase retention through dopaminergic mechanisms. We directly tested this hypothesis through pharmacological manipulation of the dopaminergic system. A total of 96 young healthy human participants were tested in a placebo-controlled double-blind between-subjects design in which they adapted to a 40° visuomotor rotation under reward or punishment conditions. We confirmed previous evidence that reward enhances retention, but the dopamine (DA) precursor levodopa (LD) or the DA antagonist haloperidol failed to influence performance. We reason that such a negative result could be due to experimental limitations or it may suggest that the effect of reward on motor memory retention is not driven by dopaminergic processes. This provides further insight regarding the role of motivational feedback in optimizing motor learning, and the basis for further decomposing the effect of reward on the subprocesses known to underlie motor adaptation paradigms.
Collapse
|
8
|
Added value of money on motor performance feedback: Increased left central beta-band power for rewards and fronto-central theta-band power for punishments. Neuroimage 2018; 179:63-78. [PMID: 29894825 DOI: 10.1016/j.neuroimage.2018.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Monetary rewards and punishments have been shown to respectively enhance retention of motor memories and short-term motor performance, but their underlying neural bases in the context of motor control tasks remain unclear. Using electroencephalography (EEG), the present study tested the hypothesis that monetary rewards and punishments are respectively reflected in post-feedback beta-band (20-30 Hz) and theta-band (3-8 Hz) oscillatory power. While participants performed upper limb reaching movements toward visual targets using their right hand, the delivery of monetary rewards and punishments was manipulated as well as their probability (i.e., by changing target size). Compared to unrewarded and unpunished trials, monetary rewards and the successful avoidance of punishments both entailed greater beta-band power at left central electrodes overlaying contralateral motor areas. In contrast, monetary punishments and reward omissions both entailed increased theta-band power at fronto-central scalp sites. Additional analyses revealed that beta-band power was further increased when rewards were lowly probable. In light of previous work demonstrating similar beta-band modulations in basal ganglia during reward processing, the present results may reflect functional communication of reward-related information between the basal ganglia and motor cortical regions. In turn, the increase in fronto-central theta-band power after monetary punishments may reflect an emphasized cognitive need for behavioral adjustments. Globally, the present work identifies possible neural substrates for the growing behavioral evidence showing beneficial effects of monetary feedback on motor learning and performance.
Collapse
|
9
|
Abstract
The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the 'reward abundance') influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors.
Collapse
|
10
|
The impact of reward and punishment on skill learning depends on task demands. Sci Rep 2016; 6:36056. [PMID: 27786302 PMCID: PMC5081526 DOI: 10.1038/srep36056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023] Open
Abstract
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.
Collapse
|