1
|
Zhang T, Li L, Hondzinski JM, Mao M, Sun W, Song Q. Tai Chi counteracts age-related somatosensation and postural control declines among older adults. J Exerc Sci Fit 2024; 22:152-158. [PMID: 38444520 PMCID: PMC10912684 DOI: 10.1016/j.jesf.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Objective To investigate the effect of a 16-week Tai Chi practice on strength, tactile sensation, kinesthesia, and static postural control among older adults of different age groups. Methods This is a quasi-experimental study. Thirteen participants aged 60-69 years (60-69yr), 11 aged 70-79 years (70-79yr), and 13 aged 80-89 years (80-89yr) completed 16 weeks of 24-form Tai Chi practice. Their ankle and hip peak torque, tactile sensation, ankle and knee kinesthesia, and the root mean square of the center of pressure (Cop-RMS) were measured before (week 0) and after (week 17) practice. Results 80-89yr showed less ankle plantar/dorsiflexion and hip abduction peak torques (p = 0.003, p < 0.001, p = 0.001), and a greater ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.002) than 60-69yr and 70-79yr. Greater ankle plantar/dorsiflexion and hip abduction torques (p = 0.011, p < 0.001, p = 0.045), improved arch and heel tactile sensation (p = 0.040, p = 0.009), and lower knee flexion/extension kinesthesia (p < 0.001, p = 0.044) were observed at week 17. The significant group*practice interaction for the fifth metatarsal head tactile sensation (p = 0.027), ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.004), and the CoP-RMS in the mediolateral direction (p = 0.047) only in 80-89yr revealed greater improvement at week 17. Conclusion Tai Chi practice increased strength, tactile sensation, kinesthesia, and static postural control among older adults. Tai Chi practice improved tactile, kinesthesia sensations, and static postural control among older adults over 80, who presented with worse strength and kinesthesia than their younger counterparts. Tai Chi practice offers a safe exercise option for those aged over 80 to encourage improvements in sensorimotor control.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Graduate School, Harbin Sport University, Harbin, 150006, China
| | - Li Li
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jan M. Hondzinski
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Wei Sun
- Department of Sports and Health Science, Shandong Sport University, Jinan, 250102, China
| | - Qipeng Song
- Department of Sports and Health Science, Shandong Sport University, Jinan, 250102, China
| |
Collapse
|
2
|
Sozzi S, Ghai S, Schieppati M. The 'Postural Rhythm' of the Ground Reaction Force during Upright Stance and Its Conversion to Body Sway-The Effect of Vision, Support Surface and Adaptation to Repeated Trials. Brain Sci 2023; 13:978. [PMID: 37508910 PMCID: PMC10377030 DOI: 10.3390/brainsci13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The ground reaction force (GRF) recorded by a platform when a person stands upright lies at the interface between the neural networks controlling stance and the body sway deduced from centre of pressure (CoP) displacement. It can be decomposed into vertical (VGRF) and horizontal (HGRF) vectors. Few studies have addressed the modulation of the GRFs by the sensory conditions and their relationship with body sway. We reconsidered the features of the GRFs oscillations in healthy young subjects (n = 24) standing for 90 s, with the aim of characterising the possible effects of vision, support surface and adaptation to repeated trials, and the correspondence between HGRF and CoP time-series. We compared the frequency spectra of these variables with eyes open or closed on solid support surface (EOS, ECS) and on foam (EOF, ECF). All stance trials were repeated in a sequence of eight. Conditions were randomised across different days. The oscillations of the VGRF, HGRF and CoP differed between each other, as per the dominant frequency of their spectra (around 4 Hz, 0.8 Hz and <0.4 Hz, respectively) featuring a low-pass filter effect from VGRF to HGRF to CoP. GRF frequencies hardly changed as a function of the experimental conditions, including adaptation. CoP frequencies diminished to <0.2 Hz when vision was available on hard support surface. Amplitudes of both GRFs and CoP oscillations decreased in the order ECF > EOF > ECS ≈ EOS. Adaptation had no effect except in ECF condition. Specific rhythms of the GRFs do not transfer to the CoP frequency, whereas the magnitude of the forces acting on the ground ultimately determines body sway. The discrepancies in the time-series of the HGRF and CoP oscillations confirm that the body's oscillation mode cannot be dictated by the inverted pendulum model in any experimental conditions. The findings emphasise the robustness of the VGRF "postural rhythm" and its correspondence with the cortical theta rhythm, shed new insight on current principles of balance control and on understanding of upright stance in healthy and elderly people as well as on injury prevention and rehabilitation.
Collapse
Affiliation(s)
| | - Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, 65188 Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, 65188 Karlstad, Sweden
| | | |
Collapse
|
3
|
Standing Balance Control of a Bipedal Robot Based on Behavior Cloning. Biomimetics (Basel) 2022; 7:biomimetics7040232. [PMID: 36546932 PMCID: PMC9776061 DOI: 10.3390/biomimetics7040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Bipedal robots have gained increasing attention for their human-like mobility which allows them to work in various human-scale environments. However, their inherent instability makes it difficult to control their balance while they are physically interacting with the environment. This study proposes a novel balance controller for bipedal robots based on a behavior cloning model as one of the machine learning techniques. The behavior cloning model employs two deep neural networks (DNNs) trained on human-operated balancing data, so that the trained model can predict the desired wrench required to maintain the balance of the bipedal robot. Based on the prediction of the desired wrench, the joint torques for both legs are calculated using robot dynamics. The performance of the developed balance controller was validated with a bipedal lower-body robotic system through simulation and experimental tests by providing random perturbations in the frontal plane. The developed balance controller demonstrated superior performance with respect to resistance to balance loss compared to the conventional balance control method, while generating a smoother balancing movement for the robot.
Collapse
|
4
|
Control of structural redundancy from the head to trunk in the human upright standing revealed using a data-driven approach. Sci Rep 2022; 12:13164. [PMID: 35915210 PMCID: PMC9343422 DOI: 10.1038/s41598-022-17322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
The human being dynamically and highly controls the head-trunk with redundant mechanical structures to maintain a stable upright standing position that is inherently unstable. The posture control strategies are also affected by the differences in the conditions of sensory inputs. However, it is unclear how the head-trunk segmental properties are altered to respond to situations that require appropriate changes in standing posture control strategies. We used a data-driven approach to conduct a multipoint measurement of head-trunk sway control in a quiet standing position with differences in the conditions of sensory inputs. Healthy young subjects with 22 accelerometers attached to their backs were evaluated for head-trunk vibration during quiet standing under two conditions: one with open eyes and one with closed eyes. The synchronization of the acceleration and the instantaneous phase was then calculated. The results showed that the synchronization of acceleration and instantaneous phase varied depending on the visual condition, and there were some continuous coherent patterns in each condition. Findings were that the structural redundancy of the head-trunk, which is multi-segmental and has a high mass ratio in the whole body, must be adjusted adaptively according to the conditions to stabilize upright standing in human-specific bipeds.
Collapse
|
5
|
Trunk and head displacements stabilized to perform both horizontal and vertical saccadic eye movements. Exp Brain Res 2021; 240:503-509. [PMID: 34806138 DOI: 10.1007/s00221-021-06274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
Vision is crucial for humans to interact with their surrounding environment, and postural sway is reduced to allow short eye movements. However, the extent of subtle changes in postural control for horizontal and vertical eye movements remains unclear. The goal of this study was to investigate the effects of vertical and horizontal eye movements on head and trunk control in young adults. Fifteen healthy adults (23.4 ± 4.7 years) stood upright in three conditions for 60 s: fixation, horizontal, and vertical guided eye movements. In fixation, participants had to fixate on a stationary target. In both the horizontal and vertical eye movements, the target was presented with a frequency of 0.5 Hz and a visual angle of 11°. Eye displacement was monitored using a SMI eye tracker (ETG2.0) and trunk and head sway were monitored using infrared markers (Optotrak 3020, NDI). The mean sway amplitude was lower in both directions for eye movements and lowest in the vertical direction compared to the fixation condition. The sway area was also lower in vertical eye movement than in the fixation condition. We also found that the sway reduction was greater at head than at trunk level. The median frequency sway in the anterior-posterior direction was higher in both eye movements than in fixation. Based upon these results, we suggest that to perform short eye movements, postural sway is more strongly controlled at the head level than at the trunk and in vertical eye movements than in horizontal movements.
Collapse
|
6
|
Savadkoohi M, Oladunni T, Thompson L. Deep Neural Networks for Human's Fall-risk Prediction using Force-Plate Time Series Signal. EXPERT SYSTEMS WITH APPLICATIONS 2021; 182:115220. [PMID: 36211616 PMCID: PMC9540455 DOI: 10.1016/j.eswa.2021.115220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Early and accurate identification of the balance deficits could reduce falls, in particular for older adults, a prone population. Our work investigates deep neural networks' capacity to identify human balance patterns towards predicting fall-risk. Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from the force-plate time series. We hypothesized that low, moderate, and high risk of falling can be characterized based on balance metrics, derived from the force-plate time series, in conjunction with deep learning algorithms. Further, we predicted that our proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other algorithms. Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm surface, eyes-open foam surface, eyes-closed foam surface) was used. Classification was based on one of the several indicators of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment. For human fall-risk prediction, the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory (LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network. Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms and state-of-the-art models on the same dataset. With an accuracy, precision, and sensitivity of 99.9%, 100%, 100%, respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient neural network in predicting human's fall-risk (based on the FES measure) using the force-plate time series signal. This is a novel methodology for an accurate prediction of human risk of fall.
Collapse
Affiliation(s)
- M. Savadkoohi
- School of Engineering and Applied Sciences, University of District of Columbia, Washington DC, USA
| | - T. Oladunni
- Department of Computer Science, University of District of Columbia, Washington DC, USA
| | - L.A. Thompson
- Department of Mechanical Engineering, University of District of Columbia, Washington DC, USA
| |
Collapse
|
7
|
Indovina I, Passamonti L, Mucci V, Chiarella G, Lacquaniti F, Staab JP. Brain Correlates of Persistent Postural-Perceptual Dizziness: A Review of Neuroimaging Studies. J Clin Med 2021; 10:4274. [PMID: 34575385 PMCID: PMC8468644 DOI: 10.3390/jcm10184274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Persistent postural-perceptual dizziness (PPPD), defined in 2017, is a vestibular disorder characterized by chronic dizziness that is exacerbated by upright posture and exposure to complex visual stimuli. This review focused on recent neuroimaging studies that explored the pathophysiological mechanisms underlying PPPD and three conditions that predated it. The emerging picture is that local activity and functional connectivity in multimodal vestibular cortical areas are decreased in PPPD, which is potentially related to structural abnormalities (e.g., reductions in cortical folding and grey-matter volume). Additionally, connectivity between the prefrontal cortex, which regulates attentional and emotional responses, and primary visual and motor regions appears to be increased in PPPD. These results complement physiological and psychological data identifying hypervigilant postural control and visual dependence in patients with PPPD, supporting the hypothesis that PPPD arises from shifts in interactions among visuo-vestibular, sensorimotor, and emotional networks that overweigh visual over vestibular inputs and increase the effects of anxiety-related mechanisms on locomotor control and spatial orientation.
Collapse
Affiliation(s)
- Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (V.M.); (F.L.)
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
- Institute of Bioimaging & Molecular Physiology, National Research Council, 20054 Milano, Italy
| | - Viviana Mucci
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (V.M.); (F.L.)
- School of Science, Western Sydney University, Sydney, NSW 2000, Australia
| | - Giuseppe Chiarella
- Unit of Audiology, Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (V.M.); (F.L.)
- Department of Systems Medicine and Centre of Space BioMedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Jeffrey P. Staab
- Departments of Psychiatry and Psychology and Otorhinolaryngology—Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Benady A, Zadik S, Zeilig G, Gilaie-Dotan S, Plotnik M. Gait Speed Modulations Are Proportional to Grades of Virtual Visual Slopes-A Virtual Reality Study. Front Neurol 2021; 12:615242. [PMID: 34512493 PMCID: PMC8425350 DOI: 10.3389/fneur.2021.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Gait is a complex mechanism relying on integration of several sensory inputs such as vestibular, proprioceptive, and visual cues to maintain stability while walking. Often humans adapt their gait to changes in surface inclinations, and this is typically achieved by modulating walking speed according to the inclination in order to counteract the gravitational forces, either uphill (exertion effect) or downhill (braking effect). The contribution of vision to these speed modulations is not fully understood. Here we assessed gait speed effects by parametrically manipulating the discrepancy between virtual visual inclination and the actual surface inclination (aka visual incongruence). Fifteen healthy participants walked in a large-scale virtual reality (VR) system on a self-paced treadmill synchronized with projected visual scenes. During walking they were randomly exposed to varying degrees of physical-visual incongruence inclinations (e.g., treadmill leveled & visual scene uphill) in a wide range of inclinations (−15° to +15°). We observed an approximately linear relation between the relative change in gait speed and the anticipated gravitational forces associated with the virtual inclinations. Mean relative gait speed increase of ~7%, ~11%, and ~17% were measured for virtual inclinations of +5°, +10°, and +15°, respectively (anticipated decelerating forces were proportional to sin[5°], sin[10°], sin[15°]). The same pattern was seen for downhill virtual inclinations with relative gait speed modulations of ~-10%, ~-16%, and ~-24% for inclinations of −5°, −10°, and −15°, respectively (in anticipation of accelerating forces). Furthermore, we observed that the magnitude of speed modulation following virtual inclination at ±10° was associated with subjective visual verticality misperception. In conclusion, visual cues modulate gait speed when surface inclinations change proportional to the anticipated effect of the gravitational force associated the inclinations. Our results emphasize the contribution of vision to locomotion in a dynamic environment and may enhance personalized rehabilitation strategies for gait speed modulations in neurological patients with gait impairments.
Collapse
Affiliation(s)
- Amit Benady
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, Israel.,The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Sean Zadik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Gabriel Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,School of Health Professions, Ono Academic College, Kiryat Ono, Israel
| | - Sharon Gilaie-Dotan
- School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, Israel.,The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,UCL Institute of Cognitive Neuroscience, London, United Kingdom
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Benady A, Zadik S, Ben-Gal O, Cano Porras D, Wenkert A, Gilaie-Dotan S, Plotnik M. Vision Affects Gait Speed but not Patterns of Muscle Activation During Inclined Walking-A Virtual Reality Study. Front Bioeng Biotechnol 2021; 9:632594. [PMID: 33898402 PMCID: PMC8062981 DOI: 10.3389/fbioe.2021.632594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
While walking, our locomotion is affected by and adapts to the environment based on vision- and body-based (vestibular and proprioception) cues. When transitioning to downhill walking, we modulate gait by braking to avoid uncontrolled acceleration, and when transitioning to uphill walking, we exert effort to avoid deceleration. In this study, we aimed to measure the influence of visual inputs on this behavior and on muscle activation. Specifically, we aimed to explore whether the gait speed modulations triggered by mere visual cues after transitioning to virtually inclined surface walking are accompanied by changes in muscle activation patterns typical to those triggered by veridical (gravitational) surface inclination transitions. We used an immersive virtual reality system equipped with a self-paced treadmill and projected visual scenes that allowed us to modulate physical-visual inclination congruence parametrically. Gait speed and leg muscle electromyography were measured in 12 healthy young adults. In addition, the magnitude of subjective visual verticality misperception (SVV) was measured by the rod and frame test. During virtual (non-veridical) inclination transitions, vision modulated gait speed by (i) slowing down to counteract the excepted gravitational "boost" in virtual downhill inclinations and (ii) speeding up to counteract the expected gravity resistance in virtual uphill inclinations. These gait speed modulations were reflected in muscle activation intensity changes and associated with SVV misperception. However, temporal patterns of muscle activation were not affected by virtual (visual) inclination transitions. Our results delineate the contribution of vision to locomotion and may lead to enhanced rehabilitation strategies for neurological disorders affecting movement.
Collapse
Affiliation(s)
- Amit Benady
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- St George’s University of London Medical School, Sheba Medical Center, Ramat Gan, Israel
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Sean Zadik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- St George’s University of London Medical School, Sheba Medical Center, Ramat Gan, Israel
| | - Oran Ben-Gal
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Desiderio Cano Porras
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Brightlands Institute for Smart Society (BISS), Maastricht University, Maastricht, Netherlands
| | - Atalia Wenkert
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Sharon Gilaie-Dotan
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- UCL Institute of Cognitive Neuroscience, London, United Kingdom
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Ghislieri M, Knaflitz M, Labanca L, Barone G, Bragonzoni L, Benedetti MG, Agostini V. Muscle Synergy Assessment During Single-Leg Stance. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2914-2922. [PMID: 33048669 DOI: 10.1109/tnsre.2020.3030847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the study of muscle synergies during the maintenance of single-leg stance there are several methodological issues that must be taken into account before muscle synergy extraction. In particular, it is important to distinguish between epochs of surface electromyography (sEMG) signals corresponding to "well-balanced" and "unbalanced" single-leg stance, since different motor control strategies could be used to maintain balance. The aim of this work is to present and define a robust procedure to distinguish between "well-balanced" and "unbalanced" single-leg stance to be chosen as input for the algorithm used to extract muscle synergies. Our results demonstrate that the proposed approach for the selection of sEMG epochs relative to "well-balanced" and "unbalanced" single-leg stance is robust with respect to the selection of the segmentation threshold, revealing a high consistency in the number of muscle synergies and high similarity among the weight vectors (correlation values range from 0.75 to 0.97). Moreover, differences in terms of average recruitment levels and balance control strategies were detected, suggesting a slightly different modular organization between "well-balanced" and "unbalanced" single-leg stance. In conclusion, this approach can be successfully used as a pre-processing step before muscle synergy extraction, allowing for a better assessment of motor control strategies during the single-leg stance task.
Collapse
|
11
|
The Effects of Visual Parabolic Motion on the Subjective Vertical and on Interception. Neuroscience 2020; 453:124-137. [PMID: 33010347 DOI: 10.1016/j.neuroscience.2020.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Observers typically present a strong bias in estimating the orientation of a visual bar when their body is tilted >60° in the roll plane and in the absence of visual background information. Known as the A-effect, this phenomenon likely results from the under-compensation of body tilt. Static visual cues can reduce such bias in the perceived vertical. Yet, it is unknown whether dynamic visual cues would be also effective. Here we presented projectile motions of a visual target along parabolic trajectories with different orientations relative to physical gravity. The aim of the experiment was twofold: First, we assessed whether the projectile motions could bias the estimation of the perceived orientation of a visual bar, measured with a classical subjective visual vertical (SVV) task. Second, we evaluated whether the ability to estimate time-to-contact of the visual target in an interception task was influenced by the orientation of these parabolic trajectories. Two groups of participants performed the experiment, either with their head and body tilted 90° along the roll plane or in an upright position. We found that the perceived orientation of the visual bar in the SVV task was affected by the orientation of the parabolic trajectories. This result was present in the tilted but not in the upright participants. In the interception task, the timing error increased linearly as a function of the orientation of the parabola. These results support the hypothesis that a gravity vector estimated from dynamic visual stimuli contributes to the subjective visual vertical.
Collapse
|
12
|
Maffei V, Indovina I, Mazzarella E, Giusti MA, Macaluso E, Lacquaniti F, Viviani P. Sensitivity of occipito-temporal cortex, premotor and Broca's areas to visible speech gestures in a familiar language. PLoS One 2020; 15:e0234695. [PMID: 32559213 PMCID: PMC7304574 DOI: 10.1371/journal.pone.0234695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/01/2020] [Indexed: 11/18/2022] Open
Abstract
When looking at a speaking person, the analysis of facial kinematics contributes to language discrimination and to the decoding of the time flow of visual speech. To disentangle these two factors, we investigated behavioural and fMRI responses to familiar and unfamiliar languages when observing speech gestures with natural or reversed kinematics. Twenty Italian volunteers viewed silent video-clips of speech shown as recorded (Forward, biological motion) or reversed in time (Backward, non-biological motion), in Italian (familiar language) or Arabic (non-familiar language). fMRI revealed that language (Italian/Arabic) and time-rendering (Forward/Backward) modulated distinct areas in the ventral occipito-temporal cortex, suggesting that visual speech analysis begins in this region, earlier than previously thought. Left premotor ventral (superior subdivision) and dorsal areas were preferentially activated with the familiar language independently of time-rendering, challenging the view that the role of these regions in speech processing is purely articulatory. The left premotor ventral region in the frontal operculum, thought to include part of the Broca's area, responded to the natural familiar language, consistent with the hypothesis of motor simulation of speech gestures.
Collapse
Affiliation(s)
- Vincenzo Maffei
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Data Lake & BI, DOT - Technology, Poste Italiane, Rome, Italy
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | | | - Maria Assunta Giusti
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emiliano Macaluso
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
- Laboratory of Neuroimaging, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Viviani
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Cano Porras D, Zeilig G, Doniger GM, Bahat Y, Inzelberg R, Plotnik M. Seeing Gravity: Gait Adaptations to Visual and Physical Inclines - A Virtual Reality Study. Front Neurosci 2020; 13:1308. [PMID: 32038123 PMCID: PMC6992711 DOI: 10.3389/fnins.2019.01308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
Using advanced virtual reality technology, we demonstrate that exposure to virtual inclinations visually simulating inclined walking induces gait modulations in a manner consistent with expected gravitational forces (i.e., acting upon a free body), suggesting vision-based perception of gravity. The force of gravity critically impacts the regulation of our movements. However, how humans perceive and incorporate gravity into locomotion is not well understood. In this study, we introduce a novel paradigm for exposing humans to incongruent sensory information under conditions constrained by distinct gravitational effects, facilitating analysis of the consistency of human locomotion with expected gravitational forces. Young healthy adults walked under conditions of actual physical inclinations as well as virtual inclinations. We identify and describe ‘braking’ and ‘exertion’ effects – locomotor adaptations accommodating gravito-inertial forces associated with physical inclines. We show that purely visual cues (from virtual inclinations) induce consistent locomotor adaptations to counter expected gravity-based changes, consistent with indirect prediction mechanisms. Specifically, downhill visual cues activate the braking effect in anticipation of a gravitational boost, whereas uphill visual cues promote an exertion effect in anticipation of gravitational deceleration. Although participants initially rely upon vision to accommodate environmental changes, a sensory reweighting mechanism gradually reprioritizes body-based cues over visual ones. A high-level neural model outlines a putative pathway subserving the observed effects. Our findings may be pivotal in designing virtual reality-based paradigms for understanding perception and action in complex environments with potential translational benefits.
Collapse
Affiliation(s)
- Desiderio Cano Porras
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Perception and Action in Complex Environments, Marie Curie International Training Network, European Union's Horizons 2020 Research and Innovation Program, Brussels, Belgium
| | - Gabriel Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Glen M Doniger
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Department of Clinical Research, NeuroTrax Corporation, Modiin, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Rivka Inzelberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Center of Pressure Feedback Modulates the Entrainment of Voluntary Sway to the Motion of a Visual Target. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Visually guided weight shifting is widely employed in balance rehabilitation, but the underlying visuo-motor integration process leading to balance improvement is still unclear. In this study, we investigated the role of center of pressure (CoP) feedback on the entrainment of active voluntary sway to a moving visual target and on sway’s dynamic stability as a function of target predictability. Fifteen young and healthy adult volunteers (height 175 ± 7 cm, body mass 69 ± 12 kg, age 32 ± 5 years) tracked a vertically moving visual target by shifting their body weight antero-posteriorly under two target motion and feedback conditions, namely, predictable and less predictable target motion, with or without visual CoP feedback. Results revealed lower coherence, less gain, and longer phase lag when tracking the less predictable compared to the predictable target motion. Feedback did not affect CoP-target coherence, but feedback removal resulted in greater target overshooting and a shorter phase lag when tracking the less predictable target. These adaptations did not affect the dynamic stability of voluntary sway. It was concluded that CoP feedback improves spatial perception at the cost of time delays, particularly when tracking a less predictable moving target.
Collapse
|
15
|
Sozzi S, Nardone A, Schieppati M. Vision Does Not Necessarily Stabilize the Head in Space During Continuous Postural Perturbations. Front Neurol 2019; 10:748. [PMID: 31354614 PMCID: PMC6635830 DOI: 10.3389/fneur.2019.00748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Vision favors head stabilization in space during perturbations of standing balance. This is particularly obvious under conditions of continuous predictable perturbations as during sinusoidal antero-posterior (A-P) translations of the supporting platform. We tested here the hypothesis that under this condition the head can instead undergo large A-P oscillations, when a precision visual task is concurrently performed. We compared the head oscillations across four conditions while standing on a continuously translating platform. Eyes open (EO, no visual task), EO while reading a text fixed to the moving platform (EO-TP), EO while reading a text fixed to earth-ground (EO-TG), eyes-closed (EC). The platform translated at 0.2 and 0.6 Hz. Participants were young adult subjects, who received no particular instruction except reading the text aloud when required. Markers fixed on head, platform and text-sheet were captured by an optoelectronic device. We found that head oscillations were larger with EC than under all EO conditions. The oscillations were the least with EO and EO-TG, and intermediate with EO-TP. This was true under both low and high translation frequency, in spite of broadly smaller head oscillations at high frequency, common to all visual conditions. The distance between the head and the text was quite constant with EO-TP but fluctuated with EO-TG. The basic whole-body coordination features were moderately similar under all conditions, as assessed by the head-platform correlation coefficients and time lags. It appears that vision does not produce head stabilization in space when a concurrent visual task requiring focusing on a reading-text moving with the platform is performed. Contrary to traditional views centered on the stabilizing effect of vision under both static and dynamic conditions, the results show that head stabilization, normally ensuring a reference for inertial guidance for body balance, can be revoked by the CNS to allow performance of a non-postural task. This novel paradigm can shift long-standing views on the effect of vision on equilibrium control and be considered a potential exercise treatment for enhancing the multisensory integration process in people with balance problems.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Schieppati
- Centro Studi Attività Motorie, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
16
|
Ivanenko Y, Gurfinkel VS. Human Postural Control. Front Neurosci 2018; 12:171. [PMID: 29615859 PMCID: PMC5869197 DOI: 10.3389/fnins.2018.00171] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
From ancient Greece to nowadays, research on posture control was guided and shaped by many concepts. Equilibrium control is often considered part of postural control. However, two different levels have become increasingly apparent in the postural control system, one level sets a distribution of tonic muscle activity (“posture”) and the other is assigned to compensate for internal or external perturbations (“equilibrium”). While the two levels are inherently interrelated, both neurophysiological and functional considerations point toward distinct neuromuscular underpinnings. Disturbances of muscle tone may in turn affect movement performance. The unique structure, specialization and properties of skeletal muscles should also be taken into account for understanding important peripheral contributors to postural regulation. Here, we will consider the neuromechanical basis of habitual posture and various concepts that were rather influential in many experimental studies and mathematical models of human posture control.
Collapse
Affiliation(s)
- Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
17
|
Passamonti L, Riccelli R, Lacquaniti F, Staab JP, Indovina I. Brain responses to virtual reality visual motion stimulation are affected by neurotic personality traits in patients with persistent postural-perceptual dizziness. J Vestib Res 2018; 28:369-378. [PMID: 30856138 DOI: 10.3233/ves-190653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Persistent postural perceptual dizziness (PPPD) is a common vestibular disorder of persistent dizziness and unsteadiness, exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Previous functional magnetic resonance imaging (fMRI) studies found dysfunctional activity in the visual-vestibular cortices in patients with PPPD. Clinical studies showed that the anxiety-related personality traits of neuroticism and introversion may predispose individuals to PPPD. However, the effects of these traits on brain function in patients with PPPD versus healthy controls (HCs) have not been studied. METHODS To investigate potential differential effects of neuroticism and introversion on functioning of their visuo-vestibular networks, 15 patients with PPPD and 15 HCs matched for demographics and motion sickness susceptibility underwent fMRI during virtual reality simulation of a rollercoaster ride in vertical and horizontal directions. RESULTS Neuroticism positively correlated with activity in the inferior frontal gyrus (IFg), and enhanced connectivity between the IFg and occipital regions in patients with PPPD relative to HCs during vertical versus horizontal motion comparison. CONCLUSIONS In patients with PPPD, neuroticism increased the activity and connectivity of neural networks that mediate attention to visual motion cues during vertical motion. This mechanism may mediate visual control of balance in neurotic patients with PPPD.
Collapse
Affiliation(s)
- Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Roberta Riccelli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology and Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Saint Camillus International University of Health Sciences, Rome, Italy
| |
Collapse
|
18
|
Riccelli R, Passamonti L, Toschi N, Nigro S, Chiarella G, Petrolo C, Lacquaniti F, Staab JP, Indovina I. Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness. Front Neurol 2017; 8:529. [PMID: 29089920 PMCID: PMC5650964 DOI: 10.3389/fneur.2017.00529] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. METHODS We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. RESULTS HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. CONCLUSION We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the visual cortex, which correlated with severity of dizziness handicap, may be a neural correlate of visual dependence.
Collapse
Affiliation(s)
- Roberta Riccelli
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States
| | - Salvatore Nigro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Giuseppe Chiarella
- Unit of Audiology, Department of experimental and clinical medicine, Magna Græcia University, Catanzaro, Italy
| | - Claudio Petrolo
- Unit of Audiology, Department of experimental and clinical medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey P. Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|