1
|
Giglia G, Gambino G, Cuffaro L, Aleo F, Sardo P, Ferraro G, Blandino V, Brighina F, Gangitano M, Piccoli T. Modulating Long Term Memory at Late-Encoding Phase: An rTMS Study. Brain Topogr 2021; 34:834-839. [PMID: 34674095 DOI: 10.1007/s10548-021-00872-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022]
Abstract
Despite a huge effort of the scientific community, the functioning of Long-Term Memory (LTM) processes is still debated and far from being elucidated. Functional and neurophysiological data point to an involvement of Dorsolateral Prefrontal Cortex (DLPFC) in both encoding and retrieval phases. However, the recently proposed Explicit/Implicit Memory Encoding and Retrieval (EIMER) model proposes that LTM at the encoding phase consists of anatomically and chronologically different sub-phases. On this basis, we aimed to investigate the role of right DLPFC during a late-encoding phase by means of low-frequency rTMS. Thirty right-handed healthy subjects were divided into three experimental groups. Inhibitory rTMS was applied over right-DLPFC immediately after the encoding phase (Late-Encoding Group) or before recognition phase (Pre-Recognition Group), 24 h after, of an LTM task. Both groups also received sham stimulation during the non-target phase, while the third group (Sham Group) received only sham stimulation in both phases. The Late-Encoding Group collected a lower number of correct responses compared with Sham Group (p = 0.00), while Pre-Retrieval Group increased accuracy as compared to the Sham Group (p = 0.0). rTMS-inhibition of the right DLPFC seems able to interfere with LTM memory performances when delivered at a late stage of the encoding phase, with opposite effects at the pre-retrieval phase.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.,Euro Mediterranean Institute of Science and Technology- I.E.ME.S.T., Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Luca Cuffaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Fabio Aleo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Valeria Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Tommaso Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Li C, Li Y, Fu L, Wang Y, Cheng X, Cui X, Jiang J, Xiao T, Ke X, Fang H. The relationships between the topological properties of the whole-brain white matter network and the severity of autism spectrum disorder: A study from monozygotic twins. Neuroscience 2021; 465:60-70. [PMID: 33887385 DOI: 10.1016/j.neuroscience.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Twins provide a valuable perspective for exploring the pathological mechanism of autism spectrum disorder (ASD). We aim to analyze differences in the topological properties of the white matter (WM) network between monozygotic twins with ASD (MZCo-ASD) and children with typical development (TD). We enrolled 67 subjects aged 2-9 years. Twenty-three pairs of MZCo-ASD and 21 singleton children with TD completed clinical assessments and diffusion tensor imaging (DTI). Graph theory was used to compare the topological properties of the WM network between the two groups, and analyzed their correlations with the severity of clinical symptoms. We found that the global efficiency (Eg) of MZCo-ASD is weaker than that of TD children, while the shortest path length (Lp) of MZCo-ASD is longer than that of TD children, and MZCo-ASD have three unique hubs (the bilateral dorsolateral superior frontal gyrus and right insula). Eg and Lp were both correlated with the repetitive behavior scores of the Autism Diagnostic Interview-Revised (ADI-R) in the MZCo-ASD group, and the nodal efficiency of the dorsal superior frontal gyrus (SFGdor) was correlated with the ADI-R scores of repetitive behaviors. Left SFGdor nodal efficiency was correlated with Repetitive Behavior and Communication, two core symptoms of autism. The results implicated that MZCo-ASD had atypical brain structural network attributes and node distributions. Using MZCo-ASD, we found that the WM topological properties that correlate with the severity of ASD core symptoms were Eg, Lp, and the nodal efficiency of the SFGdor.
Collapse
Affiliation(s)
- Chunyan Li
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Yun Li
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Linyan Fu
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Yue Wang
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Xin Cheng
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Xiwen Cui
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Jiying Jiang
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Ting Xiao
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China
| | - Xiaoyan Ke
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China.
| | - Hui Fang
- Children's Mental Health Research Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing GuangZhou Road 264, Nanjing 210029, China.
| |
Collapse
|