1
|
Shi J, Huang H, Nasrallah FA, Li A. High Neural Efficiency in Unconscious Perceptual Processing among Table Tennis Athletes: An Event-Related Potential Study. Brain Sci 2024; 14:756. [PMID: 39199451 PMCID: PMC11352455 DOI: 10.3390/brainsci14080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Neural efficiency refers to the brain's ability to function with reduced resource expenditure while maintaining high performance levels. Previous research has demonstrated that table tennis athletes have greater neural efficiency at the conscious level. However, it is unknown whether they exhibit greater neural efficiency at the unconscious level. Therefore, this study aims to investigate unconscious perceptual processing and neural efficiency in elite table tennis athletes through tasks involving the judgment of spin serves. METHODS Fifty healthy, right-handed individuals participated in this study, including 25 elite table tennis athletes and 25 control participants without professional training experience. To evaluate the unconscious perceptual characteristics of both groups, we used a combination of masked priming paradigm and event-related potential techniques. RESULTS The behavioral results reveal that, compared to the control group, the table tennis athletes displayed reduced reaction times (p < 0.001) and increased priming effects (p < 0.001) under unconscious conditions. The electrophysiological findings indicated that both groups elicited N1, N2, and P2 components. Notably, compared to the control group, the table tennis athletes exhibited significantly lower amplitude responses at the occipital lobe electrodes PO3, POz, PO4, O1, Oz, and O2 (p < 0.001). CONCLUSIONS These results further support the neural efficiency hypothesis, indicating that prolonged professional training enhances athletes' capacities for specialized unconscious cognitive processing.
Collapse
Affiliation(s)
- Jilong Shi
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China;
| | - Haojie Huang
- Department of Physical Education, Xiamen University, Xiamen 361005, China;
| | - Fatima A. Nasrallah
- Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD 4067, Australia;
| | - Anmin Li
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
2
|
Carey LM, Alexandrou G, Ladouce S, Kourtis D, Berchicci M, Hunter AM, Donaldson DI. Commit to your putting stroke: exploring the impact of quiet eye duration and neural activity on golf putting performance. Front Psychol 2024; 15:1424242. [PMID: 39055992 PMCID: PMC11270600 DOI: 10.3389/fpsyg.2024.1424242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction There is a growing interest in characterizing the cognitive-motor processes that underlie superior performance in highly skilled athletes. The aim of this study was to explore neural markers of putting performance in highly skilled golfers by recording mobile EEG (electroencephalogram) during the pre-shot period. Methods Twenty-eight right-handed participants (20 males) with a mean age of 24.2 years (± 6.4) and an average handicap of +1.7 (± 6.4) completed a testing session. Following the warm-up, participants completed 140 putts from a distance of 8ft (2.4m), with putts taken from 5 different positions. While putting, participants wore an eye tracker and a gel-based EEG system with 32 electrodes. Time and frequency domain features of the EEG signals were extracted to characterize Movement-Related Cortical Potentials (MRCP) and rhythmic modulations of neural activity in theta, alpha, sensorimotor and beta frequency bands associated with putting performance. Results Eye-tracking data demonstrate that mean Quiet Eye durations are not a reliable marker of expertise as the same duration was found for both successful and unsuccessful putts. Following rigorous data processing data from 12 participants (8 males, mean age 21.6 years ± 5.4, average handicap +1.5 ± 4.4) were included in the EEG analysis. MRCP analysis revealed performance-based differences, with unsuccessful putts having a greater negative amplitude in comparison to successful putts. Time frequency analysis of the EEG data revealed that successful putts exhibit distinct neural activity profiles compared to unsuccessful ones. For successful putts, greater suppression of beta was present in the central region prior to the putt. By contrast, increased frontal theta power was present for unsuccessful putts immediately before the putt (consistent with hesitation and the need for motor plan adjustments prior to execution). Discussion We propose that neural activity may provide plausible insights into the mechanisms behind why identical QE durations can lead to both success and failure. From an applied perspective, this study highlights the merits of a multi-measure approach to gain further insights into performance differences within highly skilled golfers. We discuss considerations for future research and solutions to address the challenges related to the complexities of collecting clean EEG signals within naturalistic sporting contexts.
Collapse
Affiliation(s)
- Laura M. Carey
- Health and Life Sciences, University of the West of Scotland, Glasgow, United Kingdom
| | - Georgia Alexandrou
- Institute of Social Marketing and Health, University of Stirling, Stirling, United Kingdom
| | | | - Dimitrios Kourtis
- Psychology and Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Marika Berchicci
- Department of Psychological, Health and Territorial Sciences, G. d'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - Angus M. Hunter
- Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - David I. Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
3
|
Li X, Wang D, Gao S, Zhou C. Impacts of Kinematic Information on Action Anticipation and the Related Neurophysiological Associations in Volleyball Experts. Brain Sci 2024; 14:647. [PMID: 39061388 PMCID: PMC11274628 DOI: 10.3390/brainsci14070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we investigated the cognitive mechanisms underlying action anticipation in volleyball players, especially concerned with the differences between experts and amateurs. Participants included both expert (male, N = 26) and amateur (male, N = 23) volleyball players, who were asked to predict spiking movements containing high, medium, and low levels of kinematic information while their electrophysiological activities were recorded. The high-information stimuli included the whole spiking action, the medium-information stimuli ended at 120 ms, and the low-information stimuli ended at 160 ms before hand-ball contact. The results showed that experts significantly outperformed amateurs in both prediction accuracy (68% in experts vs. 55% in amateurs) and reaction time (475.09 ms in experts vs. 725.81 ms in amateurs) under the medium-information condition. Analysis of alpha rhythm activity revealed that experts exhibited the strongest desynchronization under the low-information condition, suggesting increased attentional engagement. In contrast, amateurs showed the weakest desynchronization under the medium-information condition. Furthermore, mu rhythm activity analysis showed greater desynchronization in the duration of 100-300 ms before hand-ball contact for experts, correlating with their higher anticipation accuracy. These findings highlight the significant kinematic information-processing abilities of volleyball experts and elucidate the neural mechanisms underlying efficient attentional engagement and mirroring. Therefore, this study provides valuable insights for the development of targeted training programs through which to enhance athletic performance.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (X.L.); (D.W.); (S.G.)
| |
Collapse
|
4
|
Raman D, Filho E. The relationship between T7-Fz alpha coherence and peak performance in self-paced sports: a meta-analytical review. Exp Brain Res 2024; 242:1253-1265. [PMID: 38691137 DOI: 10.1007/s00221-024-06833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
We examined whether the alpha-band coherence between the T7-Fz (verbal analytical-motor planning) brain areas were related to superior performance in sports. We searched for related papers across eight databases: ProQuest Central, ProQuest Psychology Journals, PsycARTICLES, PsycINFO, SPORTDiscus, MEDLINE, Scopus, and Web of Science using relevant keywords (i.e., EEG AND sports AND coherence). Seven studies, with a total of 194 participants, met our inclusion criteria and were shortlisted for statistical analysis. We compared EEG coherence data for both within-subject and between-subject experimental designs. Our analysis revealed that athletes had lower coherence in the T7-Fz brain pathway for alpha- band activation (Hedges' g = - 0.54; p = 0.03) when performing better. Theoretically, these results corroborate the notion that athletes become more "neurally efficient" as the verbal and motor areas of their brains function more independently, i.e., the neural efficiency hypothesis. Accordingly, athletes who can limit verbal interference are more likely to perform a sporting task successfully.
Collapse
Affiliation(s)
- Dhruv Raman
- Performance Recovery and Optimization Lab, Wheelock College of Education and Human Development, Boston University, 2 Silber Way, Boston, MA, 02215, USA
| | - Edson Filho
- Performance Recovery and Optimization Lab, Wheelock College of Education and Human Development, Boston University, 2 Silber Way, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Yu CL, Kao CW, Wu JH, Hung E, Chang WC, Yang RT, Wang KP, Hung TM. Effects of self-efficacy on frontal midline theta power and golf putting performance. Front Psychol 2024; 15:1349918. [PMID: 38655217 PMCID: PMC11036087 DOI: 10.3389/fpsyg.2024.1349918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Self-efficacy (SE), defined as an individual's belief in their ability to complete a task, is linked to top-down attentional control, influencing motor performance in sports. Although the behavioral effects of SE are well-documented, there is a lack of research on the mechanisms through which SE affects sports performance. Our research aims to elucidate the neurophysiological mechanisms that underlie the impact of self-efficacy on sports performance. Specifically, we intend to explore the effects of low and high SE on frontal midline theta (Fmθ) activity, associated with sustained top-down attention, and on motor performance. Methods We recruited thirty-four professional golfers to perform 60 putts, during which their electroencephalographic activity was monitored. SE levels were assessed using a visual analog scale from 0 to 10 before each putt, with scores categorized into higher or lower SE based on each golfer's individual average score. Results Paired t-tests indicated that trials with higher SE scores had a higher putting success rate than those with lower SE scores (53.3% vs. 46.7%). Furthermore, trials associated with higher SE scores exhibited lower Fmθ activity compared to those with lower SE scores (4.49 vs. 5.18). Discussion Our results suggest that higher SE is associated with reduced top-down attentional control, leading to improved putting performance. These findings support Bandura's theory of SE, which suggests that the effects of efficacy beliefs are mediated by cognitive, motivational, emotional, and decision-making processes. This study sheds light on the intermediate processes of SE by examining its impact on the anticipation of outcomes, sports performance, and attentional control prior to putting.
Collapse
Affiliation(s)
- Chien-Lin Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Cheng-Wei Kao
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jia-Hao Wu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Eric Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Chun Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Ren-Ting Yang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Pin Wang
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, Bielefeld, Germany
- Neurocognition and Action, Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence and Learning Science, National Taiwan Normal University, Taipei, Taiwan
- Lifestyles of Health and Sustainability Executive Master of Business Administration, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
6
|
Zhou H, Daud DMBA. Ensuring athlete physical fitness using Cyber-Physical Systems (CPS) in training environments. Technol Health Care 2024; 32:2599-2618. [PMID: 38578908 DOI: 10.3233/thc-231435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Sports have been a fundamental component of any culture and legacy for centuries. Athletes are widely regarded as a source of national pride, and their physical well-being is deemed to be of paramount significance. The attainment of optimal performance and injury prevention in athletes is contingent upon physical fitness. Technology integration has implemented Cyber-Physical Systems (CPS) to augment the athletic training milieu. OBJECTIVE The present study introduces an approach for assessing athlete physical fitness in training environments: the Internet of Things (IoT) and CPS-based Physical Fitness Evaluation Method (IoT-CPS-PFEM). METHODS The IoT-CPS-PFEM employs a range of IoT-connected sensors and devices to observe and assess the physical fitness of athletes. The proposed methodology gathers information on diverse fitness parameters, including heart rate, body temperature, and oxygen saturation. It employs machine learning algorithms to scrutinize and furnish feedback on the athlete's physical fitness status. RESULTS The simulation findings illustrate the efficacy of the proposed IoT-CPS-PFEM in identifying the physical fitness levels of athletes, with an average precision of 93%. The method under consideration aims to tackle the existing obstacles of conventional physical fitness assessment techniques, including imprecisions, time lags, and manual data-gathering requirements. The approach of IoT-CPS-PFEM provides the benefits of real-time monitoring, precision, and automation, thereby enhancing an athlete's physical fitness and overall performance to a considerable extent. CONCLUSION The research findings suggest that the implementation of IoT-CPS-PFEM can significantly impact the physical fitness of athletes and enhance the performance of the Indian sports industry in global competitions.
Collapse
|
7
|
Schmaderer LF, Meyer M, Reer R, Schumacher N. What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: An exploratory fNIRS study. Eur J Sport Sci 2023; 23:2389-2399. [PMID: 37535067 DOI: 10.1080/17461391.2023.2238699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The importance of both general and sport-specific perceptual-cognitive abilities in soccer players has been investigated in several studies. Although these perceptual-cognitive skills could contribute significantly to soccer players' expertise, the underlying cortical mechanisms have not been clarified yet. Examining activity changes in the prefrontal cortex under different cognitive demands may help to better understand the underlying mechanisms of sports expertise. The aim of this study was to analyse the prefrontal activity of soccer experts during general and sport-specific cognitive tasks. For this purpose, 39 semi-professional soccer players performed four perceptual-cognitive tests, two of which assessed general cognition, the other two assessed sport-specific cognition. Since soccer is a movement-intensive sport, two tests were performed in motion. While performing cognitive tests, prefrontal activity was recorded using functional near-infrared spectroscopy (fNIRS) (NIRSport, NIRx Medical Technologies, USA). Differences of prefrontal activity in general and sport-specific cognitive tasks were analysed using paired t-tests. The results showed significant increases in prefrontal activity during general cognitive tests (novel stimuli) compared to sport-specific tests (familiar stimuli). The comparatively lower prefrontal activity change during sport-specific cognition might be due to learned automatisms of experts in this field. These results seem in line with previous findings on novel and automated cognition, "repetition suppression theory" and "neural efficiency theory". Furthermore, the different cortical processes could be caused by altered prefrontal structures of experts and might represent a decisive factor for expertise in team sports. However, further research is needed to clarify the prefrontal involvement on expertise in general and sport-specific cognition.
Collapse
Affiliation(s)
- Lena F Schmaderer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Mathilda Meyer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Rüdiger Reer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Nils Schumacher
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Scholler V, Groslambert A, Pirlot T, Grappe F. Opposite effects of a time-trial and endurance cycling exercise on the neural efficiency of competitive cyclists. Eur J Appl Physiol 2023; 123:1991-2000. [PMID: 37133575 DOI: 10.1007/s00421-023-05216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Time-trial require cyclists to have an acute control on their sensory cues to regulate their pacing strategies. Pacing an effort accurately requires an individual to process sensory signals with efficacy, a factor that can be characterized by a high neural efficiency. This study aimed to investigate the effect of a cycling time-trial on neural efficiency in comparison to a low intensity endurance exercise, the latter supposedly not requiring high sensory control. METHODS On two separate days, 13 competitive cyclists performed a session comprising of two 10 min treadmill tests, performed at different intensity zones from 1 to 5 on the rating subjective exercise intensity scale. The tests were performed before and after both a time-trial and endurance cycling exercise. Electroencephalography activity was measured during each intensity zones of the treadmill exercises. Neural efficiency was then calculated for each intensity block using the α/β electroencephalography activity ratio. RESULTS The neural efficiency averaged on the 5 IZ decreased following the time-trial in the motor cortex (- 13 ± 8%) and prefrontal cortex (- 10 ± 12%), but not after the endurance exercise. CONCLUSION To conclude, the time-trial impaired the neural efficiency and increasing the RPE of the cyclists in the severe intensity zone.
Collapse
Affiliation(s)
- Victor Scholler
- C3S Laboratory, UPFR Sport, EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France.
- Equipe Cycliste Groupama-FDJ, Besançon, France.
- Laboratory of Athlete-Material-Environment (LAME), 56 chemin des Montarmots, 25000, Besançon, France.
| | - Alain Groslambert
- C3S Laboratory, UPFR Sport, EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
- Laboratory of Athlete-Material-Environment (LAME), 56 chemin des Montarmots, 25000, Besançon, France
| | - Thibaud Pirlot
- C3S Laboratory, UPFR Sport, EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
- Laboratory of Athlete-Material-Environment (LAME), 56 chemin des Montarmots, 25000, Besançon, France
| | - Frederic Grappe
- C3S Laboratory, UPFR Sport, EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
- Equipe Cycliste Groupama-FDJ, Besançon, France
- Laboratory of Athlete-Material-Environment (LAME), 56 chemin des Montarmots, 25000, Besançon, France
| |
Collapse
|
9
|
Li Y, Zhao M, Cao Y, Gao Y, Wang Y, Yun B, Luo L, Liu W, Zheng C. Static and dynamic resting-state brain activity patterns of table tennis players in 7-Tesla MRI. Front Neurosci 2023; 17:1202932. [PMID: 37521699 PMCID: PMC10375049 DOI: 10.3389/fnins.2023.1202932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Table tennis involves quick and accurate motor responses during training and competition. Multiple studies have reported considerably faster visuomotor responses and expertise-related intrinsic brain activity changes among table tennis players compared with matched controls. However, the underlying neural mechanisms remain unclear. Herein, we performed static and dynamic resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 20 table tennis players and 21 control subjects using 7T ultra-high field imaging. We calculated the static and dynamic amplitude of low-frequency fluctuations (ALFF) of the two groups. The results revealed that table tennis players exhibited decreased static ALFF in the left inferior temporal gyrus (lITG) compared with the control group. Voxel-wised static functional connectivity (sFC) and dynamic functional connectivity (dFC) analyses using lITG as the seed region afforded complementary and overlapping results. The table tennis players exhibited decreased sFC in the right middle temporal gyrus and left inferior parietal gyrus. Conversely, they displayed increased dFC from the lITG to prefrontal cortex, particularly the left middle frontal gyrus, left superior frontal gyrus-medial, and left superior frontal gyrus-dorsolateral. These findings suggest that table tennis players demonstrate altered visuomotor transformation and executive function pathways. Both pathways involve the lITG, which is a vital node in the ventral visual stream. These static and dynamic analyses provide complementary and overlapping results, which may help us better understand the neural mechanisms underlying the changes in intrinsic brain activity and network organization induced by long-term table tennis skill training.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yuting Cao
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yadan Wang
- College of Information and Electronic Technology, Jiamusi University, Jiamusi, China
| | - Bing Yun
- Department of Public Physical and Art Education, Zhejiang University, Hangzhou, China
| | - Le Luo
- Hangzhou Wuyunshan Hospital, Hangzhou, China
| | - Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, China
| | - Chanying Zheng
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Herrebrøden H, Jensenius AR, Espeseth T, Bishop L, Vuoskoski JK. Cognitive load causes kinematic changes in both elite and non-elite rowers. Hum Mov Sci 2023; 90:103113. [PMID: 37331066 DOI: 10.1016/j.humov.2023.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
The current motor literature suggests that extraneous cognitive load may affect performance and kinematics in a primary motor task. A common response to increased cognitive demand, as observed in past studies, might be to reduce movement complexity and revert to previously learned movement patterns, in line with the progression-regression hypothesis. However, according to several accounts of automaticity, motor experts should be able to cope with dual task demands without detriment to their performance and kinematics. To test this, we conducted an experiment asking elite and non-elite rowers to use a rowing ergometer under conditions of varying task load. We employed single-task conditions with low cognitive load (i.e., rowing only) and dual-task conditions with high cognitive load (i.e., rowing and solving arithmetic problems). The results of the cognitive load manipulations were mostly in line with our hypotheses. Overall, participants reduced movement complexity, for example by reverting towards tighter coupling of kinematic events, in their dual-task performance as compared to single-task performance. The between-group kinematic differences were less clear. In contradiction to our hypotheses, we found no significant interaction between skill level and cognitive load, suggesting that the rowers' kinematics were affected by cognitive load irrespective of skill level. Overall, our findings contradict several past findings and automaticity theories, and suggest that attentional resources are required for optimal sports performance.
Collapse
Affiliation(s)
- Henrik Herrebrøden
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, Oslo 0317, Norway.
| | - Alexander Refsum Jensenius
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway; Department of Musicology, University of Oslo, Oslo, Norway.
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, Oslo 0317, Norway; Department of Psychology, Oslo New University College, Lovisenberggata 13, Oslo 0456, Norway.
| | - Laura Bishop
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway; Department of Musicology, University of Oslo, Oslo, Norway.
| | - Jonna Katariina Vuoskoski
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, Oslo 0317, Norway; Department of Musicology, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Minami S, Watanabe K, Saijo N, Kashino M. Neural oscillation amplitude in the frontal cortex predicts esport results. iScience 2023; 26:106845. [PMID: 37250772 PMCID: PMC10212977 DOI: 10.1016/j.isci.2023.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
In competitive matches, strategic decisions and emotional control are important. Relevant cognitive functions and corresponding neural activities in simple and short-term laboratory tasks have been reported. Brain resources are intensively allocated in the frontal cortex during strategic decision-making. The suppression of the frontal cortex with alpha-synchronization optimizes emotional control. However, no studies have reported the contribution of neural activity to the outcome of a more complex and prolonged task. To clarify this issue, we focused on a fighting video game following a two-round first-pass system. Frontal high-gamma and alpha power in the first and third pre-round periods, respectively, were found to be increased in a winning match. Furthermore, inter-participant variations in the importance of strategic decisions and emotional control in the first and third pre-round periods were correlated with frontal high-gamma and alpha power, respectively. Therefore, the psychological and mental state, involving frontal neural fluctuations, is predictive of match outcome.
Collapse
Affiliation(s)
- Sorato Minami
- NTT Communication Science Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Ken Watanabe
- NTT Communication Science Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
- School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Naoki Saijo
- NTT Communication Science Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
12
|
Chueh TY, Lu CM, Huang CJ, Hatfield BD, Hung TM. Collaborative neural processes predict successful cognitive-motor performance. Scand J Med Sci Sports 2023; 33:331-340. [PMID: 36331363 DOI: 10.1111/sms.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Psychomotor efficiency is achieved by expert performers who exhibit refined attentional strategies and efficient motor program execution. Further understanding of the psychomotor efficiency hypothesis requires examination of the co-activation of key electroencephalographic (EEG) indices, including frontal theta (Fθ) power, left temporal alpha (T3α) power, the sensory-motor rhythm (SMR), and frontocentral alpha power (FCα). This study examined the relationship between these selected neural processes and the odds of successful cognitive-motor performance. EEG indices of successful and failed putts observed in twenty-seven skilled golfers were subjected to mixed-effects logistic regression analysis. The results revealed that concurrent elevations of Fθ and T3α were associated with increased odds of successful performance. The co-activation from motoric processes indicated by SMR and FCα also elevated the odds. Overall, the findings emphasize that refined attention allocation and effective motor program processing are essential cognitive features of superior cognitive-motor performance for skilled golfers.
Collapse
Affiliation(s)
- Ting-Yu Chueh
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.,Department of Kinesiology, University of Maryland, College Park, Maryland, USA
| | - Calvin M Lu
- Department of Kinesiology, University of Maryland, College Park, Maryland, USA.,Department of Veterans Affairs, War Related Illness and Injury Study Center (WRIISC), Washington, DC, USA
| | - Chung-Ju Huang
- Graduate Institute of Sport Pedagogy, University of Taipei, Taipei, Taiwan
| | - Bradley D Hatfield
- Department of Kinesiology, University of Maryland, College Park, Maryland, USA.,Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, Maryland, USA
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence and Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
13
|
Parr JVV, Uiga L, Marshall B, Wood G. Soccer heading immediately alters brain function and brain-muscle communication. Front Hum Neurosci 2023; 17:1145700. [PMID: 37151902 PMCID: PMC10157247 DOI: 10.3389/fnhum.2023.1145700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is growing evidence of a link between repetitive soccer heading and the increased incidence of neurodegenerative disease. Even a short bout of soccer heading has been shown to impair cognitive performance and disrupt movement control. However, a greater understanding of the mechanisms behind these immediate impairments is needed. The current study attempted to identify how a short bout of soccer heading alters brain function and brain-muscle communication during a movement task. Methods Sixty soccer players were exposed to either an acute bout (i.e., 20 balls thrown underarm) of soccer heading (n = 30) or a control condition where participants (n = 30) headed soccer balls in virtual reality (VR). Before and after heading, we measured cognitive performance on the King-Devick test, as well as electromyography (EMG), electroencephalography (EEG) and brain-muscle communication (i.e., corticomuscular coherence; CMC) during a force precision task. Results Following the heading protocol, the VR group improved their cognitive performance whereas the Heading group showed no change. Both groups displayed more precise force contractions at post-test. However, the VR group displayed elevated frontal theta activity and global increases in alpha and beta activity during the contraction task, whereas the Heading group did not. Contrary to our expectations, the Heading group displayed elevated CMC, whereas the VR group showed no change. Discussion Our findings indicate a short bout of soccer heading may impair cognitive function and disrupt the organization of efficient neural processes that typically accompany motor skill proficiency. Soccer heading also induced corticomuscular hyperconnectivity, which could represent compensatory brain-muscle communication and an inefficient allocation of increased task-related neuromuscular resources. These initial findings offer insights to the mechanisms behind the impairments experienced after a short bout of repetitive soccer heading.
Collapse
Affiliation(s)
- Johnny V. V. Parr
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Johnny V. V. Parr,
| | - Liis Uiga
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ben Marshall
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Greg Wood
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
14
|
Moscaleski LA, Fonseca A, Brito R, Morya E, Morgans R, Moreira A, Okano AH. Does high-definition transcranial direct current stimulation change brain electrical activity in professional female basketball players during free-throw shooting? FRONTIERS IN NEUROERGONOMICS 2022; 3:932542. [PMID: 38235466 PMCID: PMC10790899 DOI: 10.3389/fnrgo.2022.932542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2024]
Abstract
Differentiated brain activation in high-performance athletes supports neuronal mechanisms relevant to sports performance. Preparation for the motor action involves cortical and sub-cortical regions that can be non-invasively modulated by electrical current stimulation. This study aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on electrical brain activity in professional female basketball players during free-throw shooting. Successful free-throw shooting (n = 2,361) from seven professional female basketball players was analyzed during two experimental conditions (HD-tDCS cathodic and sham) separated by 72 h. Three spectral bio-markers, Power Ratio Index (PRI), Delta Alpha Ratio (DAR), and Theta Beta Ratio (TBR) were measured (electroencephalography [EEG] Brain Products). Multi-channel HD-tDCS was applied for 20 min, considering current location and intensity for cathodic stimulation: FCC1h, AFF5h, AFF1h (-0.5 mA each), and FCC5h (ground). The within EEG analyses (pre and post HD-tDCS) of frontal channels (Fp1, Fp2, F3, F4, FC1, FC3) for 1 second epoch pre-shooting, showed increases in PRI (p < 0.001) and DAR (p < 0.001) for HD-tDCS cathodic condition, and in TBR for both conditions (cathodic, p = 0.01; sham, p = 0.002). Sub-group analysis divided the sample into less (n = 3; LSG) and more (n = 4; MSG) stable free-throw-shooting performers and revealed that increases in pre to post HD-tDCS in PRI only occurred for the LSG. These results suggest that the effect of HD-tDCS may induce changes in slow frontal frequency brain activities and that this alteration seems to be greater for players demonstrating a less stable free-throw shooting performance.
Collapse
Affiliation(s)
- Luciane Aparecida Moscaleski
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - André Fonseca
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Rodrigo Brito
- Neuroscience Applied Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Ryland Morgans
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First State Medical University, Moscow, Russia
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
15
|
Gao Q, Luo N, Sun M, Zhou W, Li Y, Liang M, Yang C, Zhang M, Li R, Gong L, Yu J, Leng J, Chen H. Neural efficiency and proficiency adaptation of effective connectivity corresponding to early and advanced skill levels in athletes of racket sports. Hum Brain Mapp 2022; 44:388-402. [PMID: 36053219 PMCID: PMC9842890 DOI: 10.1002/hbm.26057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/14/2022] [Indexed: 01/25/2023] Open
Abstract
This study explored how the neural efficiency and proficiency worked in athletes with different skill levels from the perspective of effective connectivity brain network in resting state. The deconvolved conditioned Granger causality (GC) analysis was applied to functional magnetic resonance imaging (fMRI) data of 35 elite athletes (EAs) and 42 student-athletes (SAs) of racket sports as well as 39 normal controls (NCs), to obtain the voxel-wised hemodynamic response function (HRF) parameters representing the functional segregation and effective connectivity representing the functional integration. The results showed decreased time-to-peak of HRF in the visual attention brain regions in the two athlete groups compared with NC and decreased response height in the advanced motor control brain regions in EA comparing to the nonelite groups, suggesting the neural efficiency represented by the regional HRF was different in early and advanced skill levels. GC analysis demonstrated that the GC values within the middle occipital gyrus had a linear trend from negative to positive, suggesting a stepwise "neural proficiency" of the effective connectivity from NC to SA then to EA. The GC values of the inter-lobe circuits in EA had the trend to regress to NC levels, in agreement with the neural efficiency of these circuits in EA. Further feature selection approach suggested the important role of the cerebral-brainstem GC circuit for discriminating EA. Our findings gave new insight into the complementary neural mechanisms in brain functional segregation and integration, which was associated with early and advanced skill levels in athletes of racket sports.
Collapse
Affiliation(s)
- Qing Gao
- Department of RadiologyFirst Affiliated Hospital to Army Medical UniversityChongqingPeople's Republic of China,School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Ning Luo
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Mengli Sun
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Weiqi Zhou
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yan Li
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Minfeng Liang
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Chengbo Yang
- The Third Department of Physical Education and TrainingChengdu Sport UniversityChengduPeople's Republic of China
| | - Mu Zhang
- Information Technology CenterChengdu Sport UniversityChengduPeople's Republic of China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Lisha Gong
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Jiali Yu
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Jinsong Leng
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huafu Chen
- Department of RadiologyFirst Affiliated Hospital to Army Medical UniversityChongqingPeople's Republic of China,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
16
|
de Brito MA, Fernandes JR, Esteves NS, Müller VT, Alexandria DB, Pérez DIV, Slimani M, Brito CJ, Bragazzi NL, Miarka B. The Effect of Neurofeedback on the Reaction Time and Cognitive Performance of Athletes: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2022; 16:868450. [PMID: 35795260 PMCID: PMC9252423 DOI: 10.3389/fnhum.2022.868450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Our study evaluated the effect of training with neurofeedback (NFB) in improving athletes' reaction time and decision-making. A computerized search in PubMed, PsycINFO, Scielo, Web of Science, EMBASE, Scopus, BVS, and Cochrane databases was performed to identify studies published from 2011 to June 2021. The protocol was registered in PROSPERO. The quality of studies that was peer-reviewed and included was assessed using the Review Manager tool, Cochrane Risk of Bias, and design and reporting quality according to the CRED-nf checklist. Standard mean differences and 95% confidence intervals (CIs) were calculated and combined using a random-effects model. A total of 07 randomized controlled trials (RCTs) (173 athletes) met the inclusion criteria. Significant effects of NFB in the experimental group in relation to reaction time were found, indicating an improvement in sports performance [standardized mean difference (SMD) = -1.08; 95% CI = (-1.90, -0.25), p = 0.0009] and cognitive performance vs. decision-making with moderate effect [SMD = 1.12; 95% CI = (-0.40, 1.85), p = 0.0001]. However, the control group had a very small effect on cognitive performance [SMD = 0.19; 95% CI = (-0.20, 0.59), p = 0.086]. NFB could improve athletes' reaction time and decision-making, effectively increasing their performance in the sports field. Future studies should focus on standardized protocols for NFB training. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021258387.
Collapse
Affiliation(s)
- Michele Andrade de Brito
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Raimundo Fernandes
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natã Sant'Anna Esteves
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Teixeira Müller
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniella Brito Alexandria
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Ignacio Valenzuela Pérez
- Escuela de Kinesiología, Facultad de Salud, Magister en Ciencias la Actividad Física y Deportes Aplicadas al Entrenamiento Rehabilitación y Reintegro Deportivo, Universidad Santo Tomás, Santiago, Chile
| | - Maamer Slimani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, Faculty of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ciro José Brito
- Department of Physical Education, Federal University of Juiz de Fora, Campus Governador Valadares, Governador Valadares, Brazil
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Bianca Miarka
- Laboratory of Psychophysiology and Performance in Sports & Combats, Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Filho E, Husselman TA, Zugic L, Penna E, Taneva N. Performance Gains in an Open Skill Video-Game Task: The Role of Neural Efficiency and Neural Proficiency. Appl Psychophysiol Biofeedback 2022; 47:239-251. [PMID: 35688989 DOI: 10.1007/s10484-022-09553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
We examined whether practice in an open skill video-game task would lead to changes in performance, attention, motivation, perceived effort, and theta, alpha, and beta waves. Specifically, we were interested on whether potential performance gains from practice would be primarily explained by the neural efficiency (i.e., cortical idling) or the neural proficiency hypothesis (i.e., mix of heightened and reduced activation across the cortex). To this end, we asked 16 novice participants (8 males and 8 females; Mage = 23.13 years) to play a Nintendo Wii video-game shooting task, namely Link's Crossbow Training. Pre-test scores, which were followed by an acquisition phase, were compared to post-test scores. Performance and subjective data were recorded for each trial and EEG data was continuously recorded using the portable EEGO System. Our findings revealed that performance increased while attention decreased at post-test, thereby confirming that practice leads to performance gains and reduces attentional overload. No changes in motivation or perceived effort were observed, perhaps because effort is a gestalt multidimension construct and video-gaming is an inherently motivating activity. EEG frequency analysis revealed that, for the most part, performance gains were accompanied by increased cortical activity across frequencies bands, thus lending primary support to the neural proficiency hypothesis. Accordingly, neurofeedback interventions to aid motor learning should teach performers not only how to silence their brains (i.e., quiescence state linked to automaticity and "flow") but also how to amplify task-relevant brain networks.
Collapse
Affiliation(s)
- Edson Filho
- Wheelock College of Education & Human Development, Boston University, 2 Silber Way, 02215, Boston, MA, United States.
| | - Tammy-Ann Husselman
- School of Psychology and Computer Science, University of Central Lancashire, Preston, UK
| | - Luca Zugic
- School of Psychology and Computer Science, University of Central Lancashire, Preston, UK
| | - Eduardo Penna
- Faculty of Physical Education, Federal University of Para, Belém, Brazil
| | - Nadezhda Taneva
- School of Psychology and Computer Science, University of Central Lancashire, Preston, UK
| |
Collapse
|
18
|
Du Y, He L, Wang Y, Liao D. The Neural Mechanism of Long-Term Motor Training Affecting Athletes’ Decision-Making Function: An Activation Likelihood Estimation Meta-Analysis. Front Hum Neurosci 2022; 16:854692. [PMID: 35517985 PMCID: PMC9062593 DOI: 10.3389/fnhum.2022.854692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
Decision-making is an advanced cognitive function that promotes information processes in complex motor situations. In recent years, many neuroimaging studies have assessed the effects of long-term motor training on athletes’ brain activity while performing decision-making tasks, but the findings have been inconsistent and a large amount of data has not been quantitatively summarized until now. Therefore, this study aimed to identify the neural mechanism of long-term motor training affecting the decision-making function of athletes by using activation likelihood estimation (ALE) meta-analysis. Altogether, 10 studies were included and comprised a total of 350 people (168 motor experts and 182 novices, 411 activation foci). The ALE meta-analysis showed that more brain regions were activated for novices including the bilateral occipital lobe, left posterior cerebellar lobe, and left middle temporal gyrus (MTG) in decision-making tasks compared to motor experts. Our results possibly suggested the association between long-term motor training and neural efficiency in athletes, which provided a reference for further understanding the neural mechanisms of motor decision-making.
Collapse
|
19
|
Li L, Smith DM. Neural Efficiency in Athletes: A Systematic Review. Front Behav Neurosci 2021; 15:698555. [PMID: 34421553 PMCID: PMC8374331 DOI: 10.3389/fnbeh.2021.698555] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
According to the neural efficiency hypothesis (NEH), professionals have more effective cortical functions in cognitive tasks. This study is focusing on providing a systematic review of sport-related NEH studies with functional neuroimaging or brain stimulation while performing a sport-specific task, with the aim to answer the question: How does long-term specialized training change an athlete's brain and improve efficiency? A total of 28 studies (N = 829, Experimental Group n = 430) from 2001 to 2020 (Median = 2014, SD = 5.43) were analyzed and results were organized into four different sections: expert-novice samples, perceptual-cognitive tasks and neuroimaging technologies, efficiency paradox, and the cluster analysis. Researchers examined a wide range of sport-specific videos and multiple object tracking (MOT) specific to 18 different sports and utilized blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), and electroencephalogram (EEG). Expert-novice comparisons were often adopted into investigations about the variations in general about optimal-controlled performance, neurophysiology, and behavioral brain research. Experts tended to perform at faster speeds, more accurate motor behavior, and with greater efficiency than novices. Experts report lower activity levels in the sensory and motor cortex with less energy expenditure, experts will possibly be more productive. These findings generally supported the NEH across the studies reviewed. However, an efficiency paradox and proficient brain functioning were revealed as the complementary hypothesis of the NEH. The discussion concentrates on strengths and key limitations. The conclusion highlights additional concerns and recommendations for prospective researchers aiming to investigate a broader range of populations and sports.
Collapse
Affiliation(s)
- Longxi Li
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| | - Daniel M Smith
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| |
Collapse
|