1
|
Holmes NP, Di Chiaro NV, Crowe EM, Marson B, Göbel K, Gaigalas D, Jay T, Lockett AV, Powell ES, Zeni S, Reader AT. Transcranial magnetic stimulation over supramarginal gyrus stimulates primary motor cortex directly and impairs manual dexterity: implications for TMS focality. J Neurophysiol 2024; 131:360-378. [PMID: 38197162 PMCID: PMC11551002 DOI: 10.1152/jn.00369.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Based on human motor cortex, the effective spatial resolution of transcranial magnetic stimulation (TMS) is often described as 5-20 mm, because small changes in TMS coil position can have large effects on motor-evoked potentials (MEPs). MEPs are often studied at rest, with muscles relaxed. During muscle contraction and movement, corticospinal excitability is higher, thresholds for effective stimulation are lower, and MEPs can be evoked from larger regions of scalp, so the effective spatial resolution of TMS is larger. We found that TMS over the supramarginal gyrus (SMG) impaired manual dexterity in the grooved pegboard task. It also resulted in short-latency MEPs in hand muscles, despite the coil being 55 mm away from the motor cortex hand area (M1). MEPs might be evoked by either a specific corticospinal connection from SMG or a remote but direct electromagnetic stimulation of M1. To distinguish these alternatives, we mapped MEPs across the scalp during rest, isotonic contraction, and manual dexterity tasks and ran electric field simulations to model the expected M1 activation from 27 scalp locations and four coil orientations. We also systematically reviewed studies using TMS during movement. Across five experiments, TMS over SMG reliably evoked MEPs during hand movement. These MEPs were consistent with direct M1 stimulation and substantially decreased corticospinal thresholds during natural movement. Systematic review suggested that 54 published experiments may have suffered from similar motor activation confounds. Our results have implications for the assumed spatial resolution of TMS, and especially when TMS is presented within 55 mm of the motor cortex.NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS) is often described as having an effective spatial resolution of ∼10 mm, because of the limited area of the scalp on which TMS produces motor-evoked potentials (MEPs) in resting muscles. We find that during natural hand movement TMS evokes MEPs from a much larger scalp area, in particular when stimulating over the supramarginal gyrus 55 mm away. Our results show that TMS can be effective at much larger distances than generally assumed.
Collapse
Affiliation(s)
- Nicholas P Holmes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | | | - Emily M Crowe
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Ben Marson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Karen Göbel
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Dominykas Gaigalas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Talia Jay
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Abigail V Lockett
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Eleanor S Powell
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Silvia Zeni
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Arran T Reader
- Department of Psychology, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
2
|
Wittenberg GF, Tian J, Kortzorg N, Wyers L, Van Halewyck F, Boisgontier MP, Levin O, Swinnen SP, Jonkers I. Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Exp Brain Res 2022; 240:1029-1044. [PMID: 35171307 PMCID: PMC9985825 DOI: 10.1007/s00221-021-06280-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements. We sought to explore how such changes in accuracy relate to changes in finger, shoulder and elbow movements during performance of reaching movements with the normal effects of gravity, unconstrained hand movement, and stable target locations. Three-dimensional kinematic data and electromyography were collected in 14 young (25 ± 6 years) and 10 older adults (68 ± 3 years) during second-long reaches to 3 targets aligned vertically in front of the participants. Older adults took longer to initiate a movement than the young adults and were more variable and inaccurate in their initial and final movements. Target height had greater effect on trajectory curvature variability in older than young adults, with angle variability relative to target position being greater in older adults around the time of peak speed. There were significant age-related differences in use of the multiple degrees of freedom of the upper extremity, with less variability in shoulder abduction in the older group. Muscle activation patterns were similar, except for a higher biceps-triceps co-contraction and tonic levels of some proximal muscle activation. These results show an age-related deficit in the motor planning and online correction of reaching movements against a predictable force (i.e., gravity) when it is not compensated by mechanical support.
Collapse
Affiliation(s)
- George F Wittenberg
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA.
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA.
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.
- Department of Neurology, School of Medicine, University of Pittsburgh, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA, 15213-3232, USA.
| | - Jing Tian
- Maryland Exercise & Robotics Center of Excellence, Geriatrics Research Educational and Clinical Center, Department of Veterans Affairs, Baltimore, MD, USA
- Laboratory for Research on Arm Function and Therapy, Departments of Neurology, Physical Therapy and Rehabilitation Science, and Medicine, Division of Gerontology and Geriatric Medicine, Older Americans Independence Center, University of Maryland, Baltimore, MD, USA
| | - Nick Kortzorg
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Lore Wyers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Florian Van Halewyck
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Bruyere Research Institute, Ottawa, Canada
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| |
Collapse
|