1
|
Rossi C, Leech KA, Roemmich RT, Bastian AJ. Automatic learning mechanisms for flexible human locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559267. [PMID: 37808648 PMCID: PMC10557598 DOI: 10.1101/2023.09.25.559267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Movement flexibility and automaticity are necessary to successfully navigate different environments. When encountering difficult terrains such as a muddy trail, we can change how we step almost immediately so that we can continue walking. This flexibility comes at a cost since we initially must pay deliberate attention to how we are moving. Gradually, after a few minutes on the trail, stepping becomes automatic so that we do not need to think about our movements. Canonical theory indicates that different adaptive motor learning mechanisms confer these essential properties to movement: explicit control confers rapid flexibility, while forward model recalibration confers automaticity. Here we uncover a distinct mechanism of treadmill walking adaptation - an automatic stimulus-response mapping - that confers both properties to movement. The mechanism is flexible as it learns stepping patterns that can be rapidly changed to suit a range of treadmill configurations. It is also automatic as it can operate without deliberate control or explicit awareness by the participants. Our findings reveal a tandem architecture of forward model recalibration and automatic stimulus-response mapping mechanisms for walking, reconciling different findings of motor adaptation and perceptual realignment.
Collapse
|
2
|
Rossi C, Roemmich RT, Bastian AJ. Understanding mechanisms of generalization following locomotor adaptation. NPJ SCIENCE OF LEARNING 2024; 9:48. [PMID: 39043679 PMCID: PMC11266392 DOI: 10.1038/s41539-024-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Our nervous system has the remarkable ability to adapt our gait to accommodate changes in our body or surroundings. However, our adapted walking patterns often generalize only partially (or not at all) between different contexts. Here, we sought to understand how the nervous system generalizes adapted gait patterns from one context to another. Through a series of split-belt treadmill walking experiments, we evaluated different mechanistic hypotheses to explain the partial generalization of adapted gait patterns from split-belt treadmill to overground walking. In support of the credit assignment hypothesis, our experiments revealed the central finding that adaptation involves recalibration of two distinct forward models. Recalibration of the first model generalizes to overground walking, suggesting that the model represents the general movement dynamics of our body. On the other hand, recalibration of the second model does not generalize to overground walking, suggesting the model represents dynamics specific to treadmill walking. These findings reveal that there is a predefined portion of forward model recalibration that generalizes across context, leading to overall partial generalization of walking adaptation.
Collapse
Affiliation(s)
- Cristina Rossi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Kim D, Triolo R, Charkhkar H. Plantar somatosensory restoration enhances gait, speed perception, and motor adaptation. Sci Robot 2023; 8:eadf8997. [PMID: 37820003 DOI: 10.1126/scirobotics.adf8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Lower limb loss is a major insult to the body's nervous and musculoskeletal systems. Despite technological advances in prosthesis design, artificial limbs are not yet integrated into the body's physiological systems. Therefore, lower limb amputees (LLAs) experience lower balance confidence, higher fear of falls, and impaired gait compared with their able-bodied peers (ABs). Previous studies have demonstrated that restored sensations perceived as originating directly from the missing limb via neural interfaces improve balance and performance in certain ambulatory tasks; however, the effects of such evoked sensations on neural circuitries involved in the locomotor activity are not well understood. In this work, we investigated the effects of plantar sensation elicited by peripheral nerve stimulation delivered by multicontact nerve cuff electrodes on gait symmetry and stability, speed perception, and motor adaptation. We found that restored plantar sensation increased stance time and propulsive force on the prosthetic side, improved gait symmetry, and yielded an enhanced perception of prosthetic limb movement. Our results show that the locomotor adaptation among LLAs with plantar sensation became similar to that of ABs. These findings suggest that our peripheral nerve-based approach to elicit plantar sensation directly affects central nervous pathways involved in locomotion and motor adaptation during walking. Our neuroprosthesis provided a unique model to investigate the role of somatosensation in the lower limb during walking and its effects on perceptual recalibration after a locomotor adaptation task. Furthermore, we demonstrated how plantar sensation in LLAs could effectively increase mobility, improve walking dynamics, and possibly reduce fall risks.
Collapse
Affiliation(s)
- Daekyoo Kim
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
- Department of Physical Education, Korea University, Seoul 02841, Korea
| | - Ronald Triolo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Kuhman D, Moll A, Reed W, Rosenblatt N, Visscher K, Walker H, Hurt CP. Effects of sensory manipulations on locomotor adaptation to split-belt treadmill walking in healthy younger and older adults. IBRO Neurosci Rep 2022; 12:149-156. [PMID: 35169768 PMCID: PMC8829562 DOI: 10.1016/j.ibneur.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Locomotor adaptation relies on processes of both the peripheral and central nervous systems that may be compromised with advanced age (e.g., proprioception, sensorimotor integration). Age-related changes to these processes may result in reduced rates of locomotor adaptation under normal conditions and should cause older adults to be disproportionately more affected by sensory manipulations during adaptation compared to younger adults. 17 younger and 10 older adults completed five separate 5-minute split-belt walking trials: three under normal sensory conditions, one with 30% bodyweight support (meant to reduce proprioceptive input), and one with goggles that constrained the visual field (meant to reduce visual input). We fit step length symmetry data from each participant in each trial with a single exponential function and used the time constant to quantify locomotor adaption rate. Group by trial ANOVAs were used to test the effects of age, condition, and their interaction on adaptation rates. Contrary to our hypothesis, we found no evidence that sensory manipulations disproportionately affected older compared to younger adults, at least in our relatively small sample. In fact, in both groups, adaptation rates remained unaffected across all trials, including both normal and sensory manipulated trials. Our results provide evidence that both younger and older adults were able to adequately reweight sources of sensory information based on environmental constraints, indicative of well-functioning neural processes of motor adaptation.
Collapse
|
5
|
Sedda G, Ostry DJ, Sanguineti V, Sabatini SP. Self-operated stimuli improve subsequent visual motion integration. J Vis 2021; 21:13. [PMID: 34529006 PMCID: PMC8447044 DOI: 10.1167/jov.21.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Evidences of perceptual changes that accompany motor activity have been limited primarily to audition and somatosensation. Here we asked whether motor learning results in changes to visual motion perception. We designed a reaching task in which participants were trained to make movements along several directions, while the visual feedback was provided by an intrinsically ambiguous moving stimulus directly tied to hand motion. We find that training improves coherent motion perception and that changes in movement are correlated with perceptual changes. No perceptual changes are observed in passive training even when observers were provided with an explicit strategy to facilitate single motion perception. A Bayesian model suggests that movement training promotes the fine-tuning of the internal representation of stimulus geometry. These results emphasize the role of sensorimotor interaction in determining the persistent properties in space and time that define a percept.
Collapse
Affiliation(s)
- Giulia Sedda
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy.,
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Canada.,Haskins Laboratories, New Haven, CT, USA.,
| | - Vittorio Sanguineti
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy.,
| | - Silvio P Sabatini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy.,
| |
Collapse
|
6
|
Gregory DL, Sup FC, Choi JT. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202084. [PMID: 33972880 PMCID: PMC8074624 DOI: 10.1098/rsos.202084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking.
Collapse
Affiliation(s)
- Daniel L. Gregory
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Frank C. Sup
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T. Choi
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL 32611-8205, USA
| |
Collapse
|
7
|
Hinton DC, Conradsson DM, Paquette C. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill. Neuroscience 2020; 451:36-50. [DOI: 10.1016/j.neuroscience.2020.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
|
8
|
The Spinal Control of Backward Locomotion. J Neurosci 2020; 41:630-647. [PMID: 33239399 DOI: 10.1523/jneurosci.0816-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Animal locomotion requires changing direction, from forward to backward. Here, we tested the hypothesis that sensorimotor circuits within the spinal cord generate backward locomotion and adjust it to task demands. We collected kinematic and electromyography (EMG) data during forward and backward locomotion at different treadmill speeds before and after complete spinal transection in six adult cats (three males and three females). After spinal transection, five/six cats performed backward locomotion, which required tonic somatosensory input in the form of perineal stimulation. One spinal cat performed forward locomotion but not backward locomotion while two others stepped backward but not forward. Spatiotemporal adjustments to increasing speed were similar in intact and spinal cats during backward locomotion and strategies were similar to forward locomotion, with shorter cycle and stance durations and longer stride lengths. Patterns of muscle activations, including muscle synergies, were similar for forward and backward locomotion in spinal cats. Indeed, we identified five muscle synergies that were similar during forward and backward locomotion. Lastly, spinal cats also stepped backward on a split-belt treadmill, with the left and right hindlimbs stepping at different speeds. Therefore, our results show that spinal sensorimotor circuits generate backward locomotion but require additional excitability compared with forward locomotion. Similar strategies for speed modulation and similar patterns of muscle activations and muscle synergies during forward and backward locomotion are consistent with a shared spinal locomotor network, with sensory feedback from the limbs controlling the direction.SIGNIFICANCE STATEMENT Animal locomotion requires changing direction, including forward, sideways and backward. This paper shows that the center controlling locomotion within the spinal cord can produce a backward pattern when instructed by sensory signals from the limbs. However, the spinal locomotor network requires greater excitability to produce backward locomotion compared with forward locomotion. The paper also shows that the spinal network controlling locomotion in the forward direction also controls locomotion in the backward direction.
Collapse
|
9
|
Unilateral step training can drive faster learning of novel gait patterns. Sci Rep 2020; 10:18628. [PMID: 33122783 PMCID: PMC7596053 DOI: 10.1038/s41598-020-75839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Humans are capable of learning many new walking patterns. People have learned to snowshoe up mountains, racewalk marathons, and march in precise synchrony. But what is required to learn a new walking pattern? Here, we demonstrate that people can learn new walking patterns without actually walking. Through a series of experiments, we observe that stepping with only one leg can facilitate learning of an entirely new walking pattern (i.e., split-belt treadmill walking). We find that the nervous system learns from the relative speed difference between the legs-whether or not both legs are moving-and can transfer this learning to novel gaits. We also show that locomotor learning requires active movement: observing another person adapt their gait did not result in significantly faster learning. These findings reveal that people can learn new walking patterns without bilateral gait training, as stepping with one leg can facilitate adaptive learning that transfers to novel gait patterns.
Collapse
|
10
|
Sombric C, Gonzalez-Rubio M, Torres-Oviedo G. Split-Belt walking induces changes in active, but not passive, perception of step length. Sci Rep 2019; 9:16442. [PMID: 31712598 PMCID: PMC6848101 DOI: 10.1038/s41598-019-52860-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
Successful motor control requires accurate estimation of our body in space for planning, executing, and evaluating the outcome of our actions. It has been shown that the estimation of limb position is susceptible to motor adaptation. However, a similar effect has not been found in locomotion, possibly due to how it was tested. We hypothesized that split-belt walking with the legs moving at different speeds changes the estimation of the legs' position when taking a step. Thus, we assessed young subjects' perception of step length (i.e., inter-feet distance at foot landing) when they moved their legs (active perception) or when the legs were moved by the experimenter (passive perception). We found that the active perception of step length was substantially altered following split-belt walking, whereas passive perception exhibited minor changes. This suggests that split-belt walking induced the adaptation of efferent signals, without altering sensory signals. We also found that active perceptual shifts were sensitive to how they were tested: they were most salient in the trailing leg and at short step lengths. Our results suggest that split-belt walking could modulate the deficient perception of step length post-stroke, which may contribute to gait asymmetries impairing patients' mobility.
Collapse
Affiliation(s)
- Carly Sombric
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
The capacity to learn new motor and perceptual calibrations develops concurrently in childhood. Sci Rep 2019; 9:9322. [PMID: 31249379 PMCID: PMC6597729 DOI: 10.1038/s41598-019-45074-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Learning new movements through an error-based process called motor adaptation is thought to involve multiple mechanisms which are still largely not understood. Previous studies have shown that young children adapt movement more slowly than adults, perhaps supporting the involvement of distinct neural circuits that come online at different stages of development. Recent studies in adults have shown that in addition to recalibrating a movement, motor adaptation also leads to changes in the perception of that movement. However, we do not yet understand the relationship between the processes that underlie motor and perceptual recalibration. Here we studied motor and perceptual recalibration with split-belt walking adaptation in adults and children aged 6-8 years. Consistent with previous work, we found that this group of children adapted their walking patterns more slowly than adults, though individual children ranged from slow to adult-like in their adaptation rates. Perceptual recalibration was also reduced in the same group of children compared to adults, with individual children ranging from having no recalibration to having adult-like recalibration. In sum, faster motor adaptation and the ability to recalibrate movement perception both come online within a similar age-range, raising the possibility that the same sensorimotor mechanisms underlie these processes.
Collapse
|
12
|
Croft JL, Schroeder RT, Bertram JEA. The Landscape of Movement Control in Locomotion: Cost, Strategy, and Solution. Front Psychol 2019; 10:716. [PMID: 31024381 PMCID: PMC6465764 DOI: 10.3389/fpsyg.2019.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Features of gait are determined at multiple levels, from the selection of the gait itself (e.g., walk or run) through the specific parameters utilized (stride length, frequency, etc.) to the pattern of muscular excitation. The ultimate choices are determined neurally, but what is involved with deciding on the appropriate strategy? Human locomotion appears stereotyped not so much because the pattern is predetermined, but because these movement patterns are good solutions for providing movement utilizing the machinery available to the individual (the legs and their requisite components). Under different circumstances the appropriate solution may differ broadly (different gait) or subtly (different parameters). Interpretation of the neural decision making process would benefit from understanding the influences that are utilized in the selection of the appropriate solution in any set of circumstances, including normal conditions. In this review we survey an array of studies that point to energetic cost as a key input to the gait coordination system, and not just an outcome of the gait pattern implemented. We then use that information to rigorously define the construct proposed by Sparrow and Newell (1998) where the effects of environment, organism, and task act as constraints determining the solution set available, and the coordination pattern is then implemented under pressure for energetic economy. The fit between the environment and the organism define affordances that can be actualized. We rely on a novel conceptualization of task that recognizes that the task goal needs to be separated from the mechanisms that achieve it so that the selection of a particular implementation strategy can be exposed and understood. This reformulation of the Sparrow and Newell construct is then linked to the proposed pressure for economy by considering it as an optimization problem, where the most readily selected gait strategy will be the one that achieves the task goal at (or near) the energetic minimum.
Collapse
Affiliation(s)
- James L. Croft
- Centre of Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - John E. A. Bertram
- Centre of Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Making Sense of Cerebellar Contributions to Perceptual and Motor Adaptation. THE CEREBELLUM 2019; 17:111-121. [PMID: 28840476 DOI: 10.1007/s12311-017-0879-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is thought to adapt movements to changes in the environment in order to update an implicit understanding of the association between our motor commands and their sensory consequences. This trial-by-trial motor recalibration in response to external perturbations is frequently impaired in people with cerebellar damage. In healthy people, adaptation to motor perturbations is also known to induce a form of sensory perceptual recalibration. For instance, hand-reaching adaptation tasks produce transient changes in the sense of hand position, and walking adaptation tasks can lead to changes in perceived leg speed. Though such motor adaptation tasks are heavily dependent on the cerebellum, it is not yet understood how the cerebellum is associated with these accompanying sensory recalibration processes. Here we asked if the cerebellum is required for the recalibration of leg-speed perception that normally occurs alongside locomotor adaptation, as well as how ataxia severity is related to sensorimotor recalibration deficits in patients with cerebellar damage. Cerebellar patients performed a speed-matching task to assess perception of leg speed before and after walking on a split-belt treadmill, which has two belts driving each leg at a different speed. Healthy participants update their perception of leg speed following split-belt walking such that the "fast" leg during adaptation feels slower afterwards, whereas cerebellar patients have significant deficits in this sensory perceptual recalibration. Furthermore, our analysis demonstrates that ataxia severity is a crucial factor for both the sensory and motor adaptation impairments that affect patients with cerebellar damage.
Collapse
|
14
|
Zych M, Rankin I, Holland D, Severini G. Temporal and spatial asymmetries during stationary cycling cause different feedforward and feedback modifications in the muscular control of the lower limbs. J Neurophysiol 2019; 121:163-176. [DOI: 10.1152/jn.00482.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Motor adaptations are useful for studying the way in which the lower limbs are controlled by the brain. However, motor adaptation paradigms for the lower limbs are typically based on locomotion tasks, where the necessity of maintaining postural stability is the main driver of adaptation and could possibly mask other underlying processes. In this study we investigated whether small temporal or spatial asymmetries can trigger motor adaptations during stationary cycling, where stability is not directly compromised. Fourteen healthy individuals participated in two experiments: in one of the experiments, the angle between the crank arms of the pedals was altered by 10° to induce a temporal asymmetry; in the other experiment, the length of the right pedal was shortened by 2.4 cm to induce a spatial asymmetry. We recorded the acceleration of the crank arms and the electromographic signals of 16 muscles (8 per leg). The analysis of the accelerometer data was used to investigate the presence of motor adaptations. Muscle synergy analysis was performed on each side to quantify changes in neuromuscular control. We found that motor adaptations are present in response to temporal asymmetries and are obtained by progressively shifting the activation patterns of two synergies on the right leg. Spatial asymmetries, on the other hand, appear to trigger a feedback-driven response that does not present an aftereffect. This response is characterized by a steplike decrease in activity in the right gastrocnemius when the asymmetry is present and likely reflects the altered task demands. NEW & NOTEWORTHY The processes driving lower limb motor adaptations are not fully clear, and previous research appears to indicate that adaptations are mainly driven by stability. We show that lower limb adaptations can be obtained also in the absence of an explicit balance threat. We also show that adaptations are present when kinematic error cannot be compensated for, suggesting the presence of intrinsic error measures regulating the timing of activation of the two legs.
Collapse
Affiliation(s)
- Magdalena Zych
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Ian Rankin
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Donal Holland
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
15
|
Leech KA, Day KA, Roemmich RT, Bastian AJ. Movement and perception recalibrate differently across multiple days of locomotor learning. J Neurophysiol 2018; 120:2130-2137. [PMID: 30183471 DOI: 10.1152/jn.00355.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learning a new movement through error-based adaptation leads to recalibration of movement and altered perception of that movement. Although presumed to be closely related, the relationship between adaptation-based motor and perceptual changes is not well understood. Here we investigated the changes in motor behavior and leg speed perception over 5 days of split-belt treadmill adaptation. We specifically wanted to know if changes in the perceptual domain would demonstrate savings-like behavior (i.e., less recalibration with more practice) and if these changes would parallel the savings observed in the motor domain. We found that the recalibration of leg speed perception decreased across days of training, indicating savings-like behavior in this domain. However, we observed that the magnitude of savings across days was different between motor and perceptual domains. These findings suggest a degree of independence between the motor and perceptual processes that occur with locomotor adaptation. NEW & NOTEWORTHY Error-based adaptation learning drives changes in movement and perception of movement. Are these changes across domains linked or simply coincidental? Here, we studied changes in movement and perception across 5 days of repeated locomotor adaptation. Savings-like behavior in the motor and perceptual domains developed with different magnitudes and over different timescales, leading us to conclude that motor and perceptual processes operate at least somewhat independently during locomotor adaptation.
Collapse
Affiliation(s)
- Kristan A Leech
- Center for Movement Studies, Kennedy Krieger Institute , Baltimore, Maryland.,Department of Neuroscience, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kevin A Day
- Center for Movement Studies, Kennedy Krieger Institute , Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute , Baltimore, Maryland.,Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Amy J Bastian
- Center for Movement Studies, Kennedy Krieger Institute , Baltimore, Maryland.,Department of Neuroscience, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
16
|
Cherry-Allen KM, Statton MA, Celnik PA, Bastian AJ. A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabil Neural Repair 2018; 32:810-820. [PMID: 30086670 DOI: 10.1177/1545968318792623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gait impairments after stroke arise from dysfunction of one or several features of the walking pattern. Traditional rehabilitation practice focuses on improving one component at a time, which may leave certain features unaddressed or prolong rehabilitation time. Recent work shows that neurologically intact adults can learn multiple movement components simultaneously. OBJECTIVE To determine whether a dual-learning paradigm, incorporating 2 distinct motor tasks, can simultaneously improve 2 impaired components of the gait pattern in people posttroke. METHODS Twelve individuals with stroke participated. Participants completed 2 sessions during which they received visual feedback reflecting paretic knee flexion during walking. During the learning phase of the experiment, an unseen offset was applied to this feedback, promoting increased paretic knee flexion. During the first session, this task was performed while walking on a split-belt treadmill intended to improve step length asymmetry. During the second session, it was performed during tied-belt walking. RESULTS The dual-learning task simultaneously increased paretic knee flexion and decreased step length asymmetry in the majority of people post-stroke. Split-belt treadmill walking did not significantly interfere with joint-angle learning: participants had similar rates and magnitudes of joint-angle learning during both single and dual-learning conditions. Participants also had significant changes in the amount of paretic hip flexion in both single and dual-learning conditions. CONCLUSIONS People with stroke can perform a dual-learning paradigm and change 2 clinically relevant gait impairments in a single session. Long-term studies are needed to determine if this strategy can be used to efficiently and permanently alter multiple gait impairments.
Collapse
Affiliation(s)
| | | | - Pablo A Celnik
- 1 The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amy J Bastian
- 1 The Johns Hopkins School of Medicine, Baltimore, MD, USA.,2 Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
17
|
Vasudevan EVL, Hamzey RJ, Kirk EM. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation. J Vis Exp 2017. [PMID: 28872105 DOI: 10.3791/55424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.
Collapse
Affiliation(s)
- Erin V L Vasudevan
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network;
| | - Rami J Hamzey
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| | - Eileen M Kirk
- Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| |
Collapse
|
18
|
Kannape OA, Herr HM. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5469-5472. [PMID: 28269495 DOI: 10.1109/embc.2016.7591964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our ability to automatically adapt our walking pattern to the demands of our environment is central to maintaining a steady gait. Accordingly, a large effort is being made to extend and integrate this adaptability to lower-limb prostheses. To date, the main focus of this research has been on short term adaptation, such as in response to a terrain transition or a sudden change in the environment. However, long term adaptation and underlying sensorimotor learning processes are critical to optimizing walking patterns and predictively changing our gait when faced with continued perturbations. Furthermore, investigating these processes in lower-limb amputees may provide a unique window into the interplay between sensory driven adaptation and top-down cerebellar modulation of locomotor reflexes and may potentially help alleviate gait asymmetries. In the current exploratory study, we therefore investigated adaptation, sensorimotor learning, and gait symmetry in a group of transtibial amputees walking with a hybrid-EMG controlled powered prosthesis and matched controls (both groups N=3). Participants were asked to perform a split-belt walking trial during which the belt on the affected side ran at twice the speed of the contralateral belt (1.0m/s and 0.5m/s respectively). Adaptation, sensorimotor learning, and symmetry are compared to two baseline conditions. Initial results illustrate that the amputees were readily able to use the hybrid controller, modulated their EMG depending on treadmill speed, and successfully adapted their gait during split-belt walking. However, the temporal gait parameters suggest that amputees used a different adaptation technique and showed reduced sensorimotor learning, while gait symmetry was improved, in the short term, post-adaptation.
Collapse
|
19
|
Wilmut K, Gentle J, Barnett AL. Gait symmetry in individuals with and without Developmental Coordination Disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 60:107-114. [PMID: 27912103 DOI: 10.1016/j.ridd.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Symmetry between the left and right side of the body during locomotion is key in a coordinated gait cycle and is also thought to be important in terms of efficiency. Although previous studies have identified aspects of the gait cycle which are atypical in children and adults with Developmental Coordination Disorder (DCD), studies have not considered whether this could be explained by asymmetrical gait. METHOD AND PROCEDURE The current study included 62 participants with and 62 without DCD (aged 7-34 years). Participants were asked to walk continuously for 1min up and down a walkway while movement was captured using an optical tracking system. Measures of step length and step time were taken for both the right and the left leg and symmetry ratios were calculated. RESULTS The DCD group showed significantly higher symmetry ratios for both measures compared to the typically developing (TD) group, with approximately a third of DCD participants falling outside the normative range for symmetry. Furthermore, a relationship was found between movement variability and degree of asymmetry. CONCLUSIONS These findings demonstrate an asymmetry in the gait of individuals with DCD which, despite improving with age, does not reach the same level as that shown by TD individuals.
Collapse
Affiliation(s)
- K Wilmut
- Oxford Brookes University, Perception and Motion Analysis Lab, Faculty of Health and Life Sciences, Oxford, OX3 0BP, United Kingdom.
| | - J Gentle
- University of Surrey, Department of Psychology, Guildford, United Kingdom
| | - A L Barnett
- Oxford Brookes University, Perception and Motion Analysis Lab, Faculty of Health and Life Sciences, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
20
|
Abstract
Optimization of gait rehabilitation using split-belt treadmills critically depends on our understanding of the roles of somatosensory perception and sensorimotor recalibration in perceiving gait asymmetry and adapting to split-belt walking. Recent evidence justifies the hypothesis that perception of gait asymmetry is based mainly on detection of temporal mismatches between afferent inputs at the spinal level.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
21
|
Hoogkamer W, O'Brien MK. Sensorimotor recalibration during split-belt walking: task-specific and multisensory? J Neurophysiol 2016; 116:1539-1541. [PMID: 26864755 DOI: 10.1152/jn.00079.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
Motor adaptations not only recalibrate movement execution but also can lead to altered movement perception in multiple sensory domains. Vazquez, Statton, Busgang, and Bastian (J Neurophysiol 114: 3255-3267, 2015) recently showed that split-belt walking affects perception of leg speed during walking, but not perceptions of leg position during standing and walking or perception of contact force during stepping. Considering their findings within the broader scope of sensorimotor recalibration in other tasks, we suggest that sensorimotor recalibrations are task specific and can be multisensory.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Megan K O'Brien
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
22
|
Roemmich RT, Long AW, Bastian AJ. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning. Curr Biol 2016; 26:2707-2716. [PMID: 27666970 DOI: 10.1016/j.cub.2016.08.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change.
Collapse
Affiliation(s)
- Ryan T Roemmich
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Andrew W Long
- Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Movement Studies, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Talis V, Ballay Y, Grishin A, Pozzo T. Functional Electrical Stimulation Alters the Postural Component of Locomotor Activity in Healthy Humans. Front Neurosci 2016; 9:478. [PMID: 26733791 PMCID: PMC4683188 DOI: 10.3389/fnins.2015.00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the effects of Functional Electrical Stimulation (FES) of different intensity on postural stability during walking in healthy subjects is necessary before these relationships in patients with postural disorders can be assessed and understood. We examined healthy subjects in Control group walking on a treadmill for 40 min and in FES group-provided with 30 min of stimulation, which intensity increased every 10 min. The main difference between Control and FES group was the progressive increase of trunk oscillations in sagittal, frontal, and horizontal planes and an increase of relative stance duration in parallel with FES intensity increase. Both Control and FES groups exhibited shank elevation angle increase as an after-effect. It is concluded, that high intensity FES significantly changes the postural component of locomotor activity, but the fatigue signs afterwards were not FES specific.
Collapse
Affiliation(s)
- Vera Talis
- Institute for Information Transmission Problems Moscow, Russia
| | - Yves Ballay
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité Sensorimotrice Dijon, France
| | | | - Thierry Pozzo
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité SensorimotriceDijon, France; Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di TecnologiaGenova, Italy; Université de Bourgogne, UFR STAPS (Sciences du Sport)Dijon, France
| |
Collapse
|
24
|
Vazquez A, Statton MA, Busgang SA, Bastian AJ. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force. J Neurophysiol 2015; 114:3255-67. [PMID: 26424576 DOI: 10.1152/jn.00302.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
Abstract
Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill--a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains.
Collapse
Affiliation(s)
- Alejandro Vazquez
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Motion Analysis Laboratory, The Kennedy Krieger Institute, Baltimore, Maryland
| | - Matthew A Statton
- Motion Analysis Laboratory, The Kennedy Krieger Institute, Baltimore, Maryland
| | - Stefanie A Busgang
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Amy J Bastian
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Motion Analysis Laboratory, The Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
25
|
Hoogkamer W, Bruijn SM, Potocanac Z, Van Calenbergh F, Swinnen SP, Duysens J. Gait asymmetry during early split-belt walking is related to perception of belt speed difference. J Neurophysiol 2015. [PMID: 26203114 DOI: 10.1152/jn.00937.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gait adaptation is essential for humans to walk according to the different demands of the environment. Although locomotor adaptation has been studied in different contexts and in various patient populations, the mechanisms behind locomotor adaptation are still not fully understood. The aim of the present study was to test two opposing hypotheses about the control of split-belt walking, one based on avoidance of limping and the other on avoiding limb excursion asymmetry. We assessed how well cerebellar patients with focal lesions and healthy control participants could sense differences between belt speeds during split-belt treadmill walking and correlated this to split-belt adaptation parameters. The ability to perceive differences between belt speeds was similar between the cerebellar patients and the healthy controls. After combining all participants, we observed a significant inverse correlation between stance time symmetry and limb excursion symmetry during the early phase of split-belt walking. Participants who were better able to perceive belt speed differences (e.g., they had a lower threshold and hence were able to detect a smaller speed difference) walked with the smallest asymmetry in stance time and the largest asymmetry in limb excursion. Our data support the hypothesis that humans aim to minimize (temporal) limping rather than (spatial) limb excursion asymmetry when using their perception of belt speed differences in the early phase of adaptation to split-belt walking.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium;
| | - Sjoerd M Bruijn
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China; MOVE Research Institute, VU University Amsterdam, Amsterdam, The Netherlands
| | - Zrinka Potocanac
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | | | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Biomechatronics Lab, Mechatronics Department, Escola Politécnica, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
26
|
Strauts J, Vanicek N, Halaki M. Acute changes in kinematic and muscle activity patterns in habitually shod rearfoot strikers while running barefoot. J Sports Sci 2015; 34:75-87. [PMID: 25908260 DOI: 10.1080/02640414.2015.1034756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.
Collapse
Affiliation(s)
- Janina Strauts
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , University of Sydney , Australia
| | - Natalie Vanicek
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , University of Sydney , Australia.,b Department of Sport, Health & Exercise Science , University of Hull , United Kingdom
| | - Mark Halaki
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , University of Sydney , Australia
| |
Collapse
|
27
|
Frigon A, Thibaudier Y, Hurteau MF. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. Neuroscience 2015; 290:266-78. [PMID: 25644423 DOI: 10.1016/j.neuroscience.2014.12.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/15/2022]
Abstract
The modulation of the neural output to forelimb and hindlimb muscles when the left and right sides step at different speeds from one another in quadrupeds was assessed by obtaining electromyography (EMG) in seven intact adult cats during split-belt locomotion. To determine if changes in EMG during split-belt locomotion were modulated according to the speed of the belt the limb was stepping on, values were compared to those obtained during tied-belt locomotion (equal left-right speeds) at matched speeds. Cats were chronically implanted for EMG, which was obtained from six muscles: biceps brachii, triceps brachii, flexor carpi ulnaris, sartorius, vastus lateralis and medial gastrocnemius. During tied-belt locomotion, cats stepped from 0.4 to 1.0m/s in 0.1m/s increments whereas during split-belt locomotion, cats stepped with left-right speed differences of 0.1 to 0.4m/s in 0.1m/s increments. During tied-belt locomotion, EMG burst durations and mean EMG amplitudes of all muscles respectively decreased and increased with increasing speed. During split-belt locomotion, there was a clear differential modulation of the EMG patterns between flexors and extensors and between the slow and fast sides. Changes in the EMG pattern of some muscles could be explained by the speed of the belt the limb was stepping on, while in other muscles there were clear dissociations from tied-belt values at matched speeds. Therefore, results show that EMG patterns during split-belt locomotion are modulated to meet task requirements partly via signals related to the stepping speed of the homonymous limb and from the other limbs.
Collapse
Affiliation(s)
- A Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique du Chus, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Y Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique du Chus, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - M-F Hurteau
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique du Chus, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
28
|
Hoogkamer W, Bruijn SM, Duysens J. Gait parameters affecting the perception threshold of locomotor symmetry: comment on Lauzière, et al. (2014). Percept Mot Skills 2014; 119:474-7. [PMID: 25244554 DOI: 10.2466/25.15.pms.119c22z8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a recent work on locomotor symmetry while walking on a split-belt treadmill, Lauzière and co-workers determined the perception threshold of gait symmetry in a sample of healthy elderly. In addition, they aimed to determine which particular gait parameters affect the symmetry of the perception threshold. Although only temporal and kinetic gait parameters were measured (and no kinematics), it was suggested that stance time symmetry is an important criterion that participants use to identify the threshold. Here it is argued that several other gait parameters could qualify equally well as main criteria used to identify the threshold and that these parameters should be taken into account in future studies.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- 1 Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Belgium
| | | | | |
Collapse
|
29
|
Lauzière S, Miéville C, Duclos C, Aissaoui R, Nadeau S. Perception threshold of locomotor symmetry while walking on a split-belt treadmill in healthy elderly individuals. Percept Mot Skills 2014; 118:475-90. [PMID: 24897881 DOI: 10.2466/25.15.pms.118k17w6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some hemiparetic patients walk asymmetrically. To better understand the mechanisms of this deficiency, the perception of locomotor symmetry was investigated in healthy elderly individuals. 16 participants (6 women, 10 men; M age = 70.9 yr., SD = 4.1) walked on a split-belt treadmill either at a self-selected or imposed gait speed. The speed of the two belts was initially similar (or different) and then gradually differed (or matched), so participants had to detect the point of perceived asymmetry (or symmetry). The results revealed that thresholds occurred when the belt speed ratios were .88 and .85. Initial gait speed did not affect the threshold. The parameter that correlated the most with belt speed asymmetry was stance time of the parameters measured. Future studies will investigate whether stroke affects gait symmetry judgments.
Collapse
|
30
|
Maclellan MJ, Ivanenko YP, Massaad F, Bruijn SM, Duysens J, Lacquaniti F. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans. J Neurophysiol 2014; 111:1541-52. [PMID: 24478155 DOI: 10.1152/jn.00437.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is growing evidence that human locomotion is controlled by flexibly combining a set of basic muscle activity patterns. To explore how these patterns are modified to cope with environmental constraints, 10 healthy young adults 1st walked on a split-belt treadmill at symmetric speeds of 4 and 6 km/h for 2 min. An asymmetric condition was then performed for 10 min in which treadmill speeds for the dominant (fast) and nondominant (slow) sides were 6 and 4 km/h, respectively. This was immediately followed by a symmetric speed condition of 4 km/h for 5 min. Gait kinematics and ground reaction forces were recorded. Electromyography (EMG) was collected from 12 lower limb muscles on each side of the body. Nonnegative matrix factorization was applied to the EMG signals bilaterally and unilaterally to obtain basic activation patterns. A cross-correlation analysis was then used to quantify temporal changes in the activation patterns. During the early (1st 10 strides) and late (final 10 strides) phases of the asymmetric condition, the patterns related to ankle plantar flexor (push-off) of the fast limb and quadriceps muscle (contralateral heel contact) of the slow limb occurred earlier in the gait cycle compared with the symmetric conditions. Moreover, a bilateral temporal alignment of basic patterns between limbs was still maintained in the split-belt condition since a similar shift was observed in the unilateral patterns. The results suggest that the temporal structure of these locomotor patterns is shaped by sensory feedback and that the patterns are bilaterally linked.
Collapse
Affiliation(s)
- M J Maclellan
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | | | |
Collapse
|
31
|
Toney ME, Chang YH. Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces. Exp Brain Res 2013; 231:433-43. [PMID: 24081680 DOI: 10.1007/s00221-013-3708-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Human walking dynamics are typically framed in the context of mechanics and energetics rather than in the context of neuromuscular control. Dynamic walking principles describe one helpful theoretical approach to characterize efficient human walking mechanics over many steps. These principles do not, however, address how such walking is controlled step-by-step despite small perturbations from natural variability. Our purpose was to identify neuromechanical control strategies used to achieve consistent and robust locomotion despite natural step-to-step force variability. We used the uncontrolled manifold concept to test whether human walkers select combinations of leading and trailing leg-forces that generate equivalent net-force trajectories during step-to-step transitions. Subjects selected leading and trailing leg-force combinations that generated consistent vertical net-force during step-to-step transitions. We conclude that vertical net-force is an implicit neuromechanical goal of human walking whose trajectory is stabilized for consistent step-to-step transitions, which agrees with the principles of dynamic walking. In contrast, inter-leg-force combinations modulated anterior-posterior net-force trajectories with each step to maintain constant walking speed, indicating that a consistent anterior-posterior net-force trajectory is not an implicit goal of walking. For a more complete picture of hierarchical locomotor control, we also tested whether each individual leg-force trajectory was stabilized through the selection of leg-force equivalent joint-torque combinations. The observed consistent vertical net-force trajectory was achieved primarily through the selection of joint-torque combinations that modulated trailing leg-force during step-to-step transitions. We conclude that humans achieve robust walking by harnessing inherent motor abundance of the joints and legs to maintain consistent step-by-step walking performance.
Collapse
Affiliation(s)
- Megan E Toney
- Comparative Neuromechanics Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St NW, Atlanta, GA, 30318-0356, USA
| | | |
Collapse
|
32
|
Kannape OA, Blanke O. Self in motion: sensorimotor and cognitive mechanisms in gait agency. J Neurophysiol 2013; 110:1837-47. [PMID: 23825398 DOI: 10.1152/jn.01042.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acting in our environment and experiencing ourselves as conscious agents are fundamental aspects of human selfhood. While large advances have been made with respect to understanding human sensorimotor control from an engineering approach, knowledge about its interaction with cognition and the conscious experience of movement (agency) is still sparse, especially for locomotion. We investigated these relationships by using life-size visual feedback of participants' ongoing locomotion, thereby extending agency research previously limited to goal-directed upper limb movements to continuous movements of the entire body. By introducing temporal delays and cognitive loading we were able to demonstrate distinct effects of bottom-up visuomotor conflicts as well as top-down cognitive loading on the conscious experience of locomotion (gait agency) and gait movements. While gait agency depended on the spatial and temporal congruency of the avatar feedback, gait movements were solely driven by its temporal characteristics as participants nonconsciously attempted to synchronize their gait with their avatar's gait. Furthermore, gait synchronization was suppressed by cognitive loading across all tested delays, whereas gait agency was only affected for selective temporal delays that depended on the participant's step cycle. Extending data from upper limb agency and auditory gait agency, our results are compatible with effector-independent and supramodal control of agency; they show that both mechanisms are dissociated from automated sensorimotor control and that cognitive loading further enhances this dissociation.
Collapse
Affiliation(s)
- O A Kannape
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
33
|
Duysens J, Potocanac Z, Hegeman J, Verschueren S, McFadyen BJ. Split-second decisions on a split belt: does simulated limping affect obstacle avoidance? Exp Brain Res 2012; 223:33-42. [PMID: 22941358 DOI: 10.1007/s00221-012-3238-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
During normal gait a suddenly appearing obstacle is avoided either by making a large crossing step (long-step strategy, LSS) or by interrupting the swing phase (short-step strategy, SSS) depending on the time of appearance of the obstacle in the step cycle. Limping changes the proportion of time spent in the swing phase and the question arises whether this could affect the ability to avoid obstacles. This was investigated using a split-belt treadmill that induces behavior that is similar to limping even in normal adults. Subjects walked on a split-belt treadmill with speed ratios between left and right of 2:2 up to 2:8 km/h in combination with obstacle avoidance (OA) on the slow belt. The failure rate of obstacle avoidance increased markedly as speed differences between legs increased. This increment was paralleled by augmented use of the SSS, related to an increase in time pressure. In all split-belt walking conditions, the alternative strategy (LSS) yielded less OA failures but it required much longer preparation time than the SSS. In addition, the prolonged stance phases prior to crossing in the LSS required a concomitant prolongation of the contralateral swing phase. This was difficult to achieve at times and as a result the swing phase was sometimes interrupted, giving rise to a contralateral SSS (and a 2:1 coordination pattern). It is concluded that simulated limping greatly increases the risk of failing to avoid suddenly appearing obstacles.
Collapse
Affiliation(s)
- Jacques Duysens
- Department of Kinesiology, KU Leuven, Tervuursevest 101-Bus 01500, 3001, Heverlee, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Effects of moveable platform training in preventing slip-induced falls in older adults. Ann Biomed Eng 2011; 40:1111-21. [PMID: 22134467 DOI: 10.1007/s10439-011-0477-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
Identifying effective interventions is vital in preventing slip-induced fall accidents in older adults. The purpose of the current study was to evaluate the efficacy of moveable platform training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (training and control). Both groups underwent three sessions including baseline slip, training, and transfer of training on a slippery surface. Both groups experienced two slips on a slippery surface, one during the baseline and the other (after 2 weeks) during the transfer of training session. In the training session, the training group underwent twelve simulated slips using a moveable platform while the control group performed normal walking trials. Kinematic, kinetic, and EMG data were collected during all the sessions. Results indicated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer proactive and reactive control strategies learned during training to the second slip trial. The proactive adjustments include increased center-of-mass velocity and transitional acceleration after training. Reactive adjustments include reduction in muscle onset and time to peak activations of knee flexors and ankle plantar flexors, reduced ankle and knee coactivation, reduced slip displacement, and reduced time to peak knee flexion, trunk flexion, and hip flexion velocities. In general, the results indicated a beneficial effect of perturbation training in reducing slip severity and recovery kinematics in healthy older adults.
Collapse
|
35
|
Feasel J, Whitton MC, Kassler L, Brooks FP, Lewek MD. The integrated virtual environment rehabilitation treadmill system. IEEE Trans Neural Syst Rehabil Eng 2011; 19:290-7. [PMID: 21652279 DOI: 10.1109/tnsre.2011.2120623] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT's potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback.
Collapse
Affiliation(s)
- Jeff Feasel
- Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
36
|
Relative temporal leading or following position of the contralateral limb generates different aftereffects in muscle phasing following adaptation training post-stroke. Exp Brain Res 2011; 211:37-50. [PMID: 21523333 DOI: 10.1007/s00221-011-2644-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Locomotor coordination depends on precise and appropriate adjustments of intra- and interlimb muscle activity phasing. Muscle coordination deficits, in the form of inappropriately phased muscle activity patterns, are well recognized in both the paretic and non-paretic limbs of stroke survivors. Our recent work demonstrated that muscle phasing can be systematically influenced by changing the relative angular positions of limbs in both neurologically intact individuals and people post-stroke. However, it is still unknown whether the observed transient changes in adjusted muscle phasing can be adapted following a short-bout of training on the split-crank ergometer. To explore the extent to which the non-paretic and paretic limbs of people with stroke can adapt to new muscle activity phasing changes, we examined the adaptation of muscle phasing following a short-bout of pedaling training at two specific relative spatial angular positions of limbs that had caused the greatest phasing changes in our previous studies. Twelve individuals with post-cerebral stroke and twelve age- and gender-matched control subjects participated in this study. We demonstrated that both intact and cerebrally impaired nervous systems are capable of adapting new muscle phasing patterns and producing aftereffects that persisted for at least 10 min. However, we observed a completely different trend of aftereffects in post-stroke subjects compared with controls. Specifically, in controls, the aftereffects were observed only in the leg that was in the following position during the adaptation training whereas in post-stroke subjects, aftereffects were observed only in the leg that acted as the leading leg during adaptation, regardless of the limb being paretic or non-paretic. These findings suggest that adapting a new muscle activity pattern during a bilateral locomotor task depends mainly on the relative temporal position of contralateral limb.
Collapse
|
37
|
Fouad K, Tetzlaff W. Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 2011; 235:91-9. [PMID: 21333646 DOI: 10.1016/j.expneurol.2011.02.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 12/15/2022]
Abstract
Rehabilitative training is currently one of the most successful treatments to promote functional recovery following spinal cord injury. Nevertheless, there are many unanswered questions including the most effective and beneficial design, and the mechanisms underlying the training effects on motor recovery. Furthermore, rehabilitative training will certainly be combined with pharmacological treatments developed to promote the "repair" of the injured spinal cord. Thus, insight into training-induced mechanisms will be of great importance to fine tune such combined treatments. In this review we address current challenges of rehabilitative training and mechanisms involved in promoting motor recovery with the focus on animal models. These challenges suggest that although rehabilitative training appears to be a relatively straight forward treatment approach, more research is needed to optimize its effect on functional outcome in order to enhance our chances of success when combining pharmacological treatments promoting axonal growth and rehabilitative training in the clinic.
Collapse
Affiliation(s)
- K Fouad
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
38
|
Bouyer LJ. Chapter 8--challenging the adaptive capacity of rhythmic movement control: from denervation to force field adaptation. PROGRESS IN BRAIN RESEARCH 2011; 188:119-34. [PMID: 21333806 DOI: 10.1016/b978-0-444-53825-3.00013-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neural control of walking involves voluntary descending drive, automatic rhythm and pattern-generating circuits, and sensory feedback to produce appropriate motor output. This control system has to be both robust and adaptable to remain appropriately calibrated to the changes in body size and in environmental demands that occur throughout life. In this chapter, current experimental models that are used to study the adaptive capacity of rhythmic movement control will be presented. Overall, while walking is a complex movement requiring extremely well-timed muscle activation sequences, and considering the presence of automatic rhythm generating circuits, its neural control nevertheless shows a large potential for adaptive modification. Regardless if the need for motor output modification is of internal (e.g., denervations) or external (e.g., changes in environment dynamics) origin, the system copes with the challenge rapidly and efficiently. Neural structures involved in adaptation are distributed, and even reduced preparations such as low spinal cats show extensive adaptive capacity. The degree of adaptive capacity is not unlimited, however. Functional flexors cannot be turned into extensors, and vice versa. In addition, recent evidence suggest that adaptive capacity may be dependent on the timing in the movement where adaptation is required (phase dependency), some phases being more amendable to change than others. Clearly, while important progress has been achieved using denervations and motor adaptation protocols, many questions remain to be answered regarding the mechanisms underlying adaptation and retention of adapted motor output, as well as regarding how sensory inputs are used to trigger adaptation. Recent advances in robotics, together with the design of simple, yet clever protocols such as catch trials are very promising tools to provide more answers.
Collapse
Affiliation(s)
- Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Department of Rehabilitation, Université Laval, Quebec, Canada
| |
Collapse
|
39
|
Evidence for limb-independent control of locomotor trajectory. Exp Brain Res 2010; 201:613-8. [PMID: 19921159 DOI: 10.1007/s00221-009-2075-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
After stepping in place on a rotating treadmill, individuals exhibit involuntary turning in the direction opposite treadmill rotation when stepping in place on a stationary surface without vision. This response is called podokinetic after-rotation (PKAR). It remains unclear where the control center for PKAR is located and whether separate, independent podokinetic control centers exist for each lower limb. To better understand neural mechanisms underlying locomotor trajectory adaptation, this study asked whether PKAR transfers between lower limbs. Thirteen healthy adults underwent separate 15-min sessions where one (trained) leg or both legs stepped on the rotating surface. Afterward, all subjects exhibited PKAR during one-legged hopping on a stationary surface, whether hopping on the trained or untrained limb. There were no significant differences in mean turning velocity across conditions. Our results support the absence of independent podokinetic control centers for lower limbs, indicating that a single center may control locomotor trajectory.
Collapse
|
40
|
Vasudevan EVL, Bastian AJ. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol 2009; 103:183-91. [PMID: 19889853 DOI: 10.1152/jn.00501.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New walking patterns can be learned over short time scales (i.e., adapted in minutes) using a split-belt treadmill that controls the speed of each leg independently. This leads to storage of a modified motor pattern that is expressed as an aftereffect in regular walking conditions and must be de-adapted to return to normal. Here we asked whether the nervous system adapts a general walking pattern that is used across many speeds or a specific pattern affecting only the two speeds experienced during split-belt training. In experiment 1, we tested three groups of healthy adult subjects walking at different split-belt speed combinations and then assessed aftereffects at a range of speeds. We found that aftereffects were largest at the slower speed that was used in split-belt training in all three groups, and it decayed gradually for all other speeds. Thus adaptation appeared to be more strongly linked to the slow walking speed. This result suggests a separation in the functional networks used for fast and slow walking. We tested this in experiment 2 by adapting walking to split belts and then determining how much fast regular walking washed out the slow aftereffect and vice versa. We found that 23-38% of the aftereffect remained regardless of which speed was washed out first. This demonstrates that there is only partial overlap in the functional networks coordinating different walking speeds. Taken together, our results suggest that there are some neural networks for controlling locomotion that are recruited specifically for fast versus slow walking in humans, similar to recent findings in other vertebrates.
Collapse
Affiliation(s)
- Erin V L Vasudevan
- Motion Analysis Laboratory, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
41
|
Brady RA, Peters BT, Bloomberg JJ. Strategies of healthy adults walking on a laterally oscillating treadmill. Gait Posture 2009; 29:645-9. [PMID: 19233653 DOI: 10.1016/j.gaitpost.2009.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 02/02/2023]
Abstract
We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate locomotor responses produced by healthy adults introduced to a dynamic walking surface. The experiment examined self-selected strategies employed by participants when exposed to continuous, sinusoidal lateral motion of the support surface while walking. Torso translation and step width were used to classify responses used to stabilize gait in this novel, dynamic environment. Two response categories emerged. Participants tended to either fix themselves in space (FIS), allowing the treadbelt to move laterally beneath them, or fix themselves to the base (FTB), moving laterally as the motion base oscillated. The degree of fixation in both extremes varied across participants. This finding suggests that normal adults have innate and varied preferences for optimizing gait stability, some depending more heavily on vision (FIS group) and others on proprioception (FTB group).
Collapse
Affiliation(s)
- Rachel A Brady
- Wyle Integrated Science and Engineering Group, Houston, TX 77058, USA.
| | | | | |
Collapse
|
42
|
Sicre A, Leclercq S, Gaudez C, Gauthier GM, Vercher JL, Bourdin C. Modelling gait processes as a combination of sensory-motor and cognitive controls in an attempt to describe accidents on the level in occupational situations. INDUSTRIAL HEALTH 2008; 46:3-14. [PMID: 18270445 DOI: 10.2486/indhealth.46.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In occupational situations, accidents referred to as accidents on the level (AoLs) occur most of the time when locomotion control fails. This control is determined by the interactions between the operator and the environment, the task and the used tools. Hence, AoLs prevention requires developing ways to optimise these interactions. More fundamentally, AoLs prevention requires understanding locomotion control in situations where this control is at sake, that is in situations involving one or more AoLs factors. The purpose of this article is to propose a comprehensive model for the control of locomotion in occupational environments. This model featuring the operator, the task and the working space should be an appropriate tool to understand AoLs in the scope of their prevention. Firstly, we describe what occupational AoLs are. In a second part, we present a review of the theoretical and experimental knowledge related to the locomotion system through the various means developed by the Central Nervous System to cope with perturbations of the environment and/or particular constraints from the task. Finally, we propose a simplified systemic model presenting the various levels of control (sensory-motor to cognitive levels) describing locomotion in occupational situations, and we suggest experiments likely to produce the appropriate data to construct the final comprehensive model.
Collapse
Affiliation(s)
- Alexandrine Sicre
- UMR 6152-Mouvement et Perception, Faculté des Sciences du Sport, 163 avenue de Luminy, Marseille cedex 09, France
| | | | | | | | | | | |
Collapse
|
43
|
Marques B, Colombo G, Müller R, Dürsteler MR, Dietz V, Straumann D. Influence of vestibular and visual stimulation on split-belt walking. Exp Brain Res 2007; 183:457-63. [PMID: 17665177 DOI: 10.1007/s00221-007-1063-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
We investigated the influence of vestibular (caloric ear irrigation) and visual (optokinetic) stimulation on slow and fast split-belt walking. The velocity of one belt was fixed (1.5 or 5.0-6.0 km/h) and subjects (N = 8 for vestibular and N = 6 for visual experiments) were asked to adjust the velocity of the other belt to a level at which they perceived the velocity of both the belts as equal. Throughout all experiments, subjects bimanually held on to the space-fixed handles along the treadmill, which provided haptic information on body orientation. While the optokinetic stimulus (displayed on face-mounted virtual reality goggles) had no effect on belt velocity adjustments compared to control trials, cold-water ear irrigation during slow (but not fast) walking effectively influenced belt velocity adjustments in seven of eight subjects. Only two of these subjects decreased the velocity of the ipsilateral belt, consistent with the ipsilateral turning toward the irrigated ear in the Fukuda stepping test. The other five subjects, however, increased the velocity of the ipsilateral belt. A straight-ahead sense mechanism can explain both decreased and increased velocity adjustments. Subjects decrease or increase ipsilateral belt velocity depending on whether the vestibular stimulus is interpreted as an indicator of the straight-ahead direction (decreased velocity) or as an error signal relative to the straight-ahead direction provided by the haptic input from the space-fixed handles along the treadmill (increased velocity). The missing effect during fast walking corroborates the findings by others that the influence of vestibular tone asymmetry on locomotion decreases at higher gait velocities.
Collapse
Affiliation(s)
- B Marques
- Neurology Department, Zürich University Hospital, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
McVea DA, Pearson KG. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses. J Neurophysiol 2006; 97:659-69. [PMID: 17108090 DOI: 10.1152/jn.00921.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A consistent feature of animal locomotion is the capacity to maintain stable movements in changing environments. Here we describe long-term modification of the swing movement of the hind leg in cats in response to repeatedly impeding the movement of the leg. While studying phase transitions in the hind legs, we discovered that repetitively evoking the stumbling-corrective reaction led to long-lasting increases in knee flexion and step height during swing to avoid the impediment. These increases were apparent after nearly 20 stimuli and maximal after about 120 stimuli and, in some animals, they persisted for > or =24 h after presentation of the stimuli. Furthermore, these long-lasting changes were context dependent and did not generalize to other environments; when walking was observed in an environment distinct from that used in training, the hind-limb kinematics returned to normal. To gain insight into what regions of the nervous system might be involved in this long-term modification, we examined the changes in stepping in decerebrate cats after multiple perturbed steps. In this situation, there was a short-term increase in step height, although this increase was smaller than that evoked in intact animals and persisted for <1 min after termination of the stimuli. Thus induction of the long-term increase in step height requires the forebrain. We propose that the conditioned change in leg movement is related to a general ability of animals to adapt locomotor movements to new features of the environment.
Collapse
Affiliation(s)
- D A McVea
- Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
45
|
Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res 2006; 177:336-46. [PMID: 16972073 DOI: 10.1007/s00221-006-0676-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/10/2006] [Indexed: 11/27/2022]
Abstract
While it is known that certain pathologies may impact on left-right symmetry of gait, little is known about the mechanisms that contribute to gait symmetry or how high in the hierarchy of the control of gait symmetry is regulated in humans. To assess the contribution of cognitive function to gait symmetry, we measured gait asymmetry (GA) in three subject groups, patients with Parkinson's disease (PD, n = 21), idiopathic elderly fallers (n = 15), and healthy elderly controls (n = 11). All subjects walked, under two walking conditions: usual walking and dual tasking (cognitive loading) condition. For each subject, the swing time (SW) was calculated and averaged across strides for the left and right feet (SWL and SWR). GA was defined as: 100 x /ln(SWR/SWL)/. For both the PD patients and the elderly fallers GA values were significantly higher during the usual walking condition, as compared with the control group (P < 0.01). In addition, for both the PD patients and the elderly fallers, GA significantly increased when they walked and performed a dual task, compared with the usual walking condition (P < 0.003). In contrast, dual tasking did not affect the GA of the healthy controls (P = 0.518). GA was associated with gait speed and gait variability, but no correlations were found between GA and the asymmetry of the classic PD motor symptoms. Thus, the results suggest that the ability to generate a steady, rhythmic walk with a bilaterally coordinated gait does not rely heavily on mental attention and cognitive resources in healthy older adults. In contrast, however, when gait becomes impaired and less automatic, GA apparently relies on cognitive input and attention.
Collapse
Affiliation(s)
- Galit Yogev
- Movement Disorders Unit, Neurology Department, Tel-Aviv Sourasky Medical Center, 6 Weizman Street, Tel-Aviv 64239, Israel
| | | | | | | | | |
Collapse
|
46
|
Bunday KL, Reynolds RF, Kaski D, Rao M, Salman S, Bronstein AM. The effect of trial number on the emergence of the 'broken escalator' locomotor aftereffect. Exp Brain Res 2006; 174:270-8. [PMID: 16639502 DOI: 10.1007/s00221-006-0446-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 03/14/2006] [Indexed: 11/24/2022]
Abstract
Walking onto a stationary platform, which had been previously experienced as moving generates a locomotor aftereffect (LAE), which resembles the 'broken escalator' phenomenon. Experimentally, this is achieved by having subjects walk initially onto a stationary sled (BEFORE condition), then onto a moving sled (MOVING condition, or adaptation trials) and then again onto the stationary sled (AFTER condition). Subjects are always appropriately warned of the change in conditions. In this paper, we ask how many adaptation trials are needed to produce such a LAE. Thus, in two experiments, the number of MOVING trials was varied between 20 and 5 (Experiment 1) and between 8 and 1 (Experiment 2). Gait velocity, trunk position, foot contact timing and EMG of the ankle flexor-extensors muscles were measured. In comparison with BEFORE trials all groups in the AFTER trials walked inappropriately fast, experienced a large overshoot of the trunk and showed increased leg EMG, indicating that all groups showed a LAE. In each experiment, and for all variables, no significant difference between the groups (i.e. 20 down to one MOVING trials) was found. The study shows that this LAE, in contrast to other motor aftereffects reported in the literature, can be generated with only one or two adaptation trials and without requiring unexpected 'catch' trials. The fast aftereffect generation observed is likely to depend on two types of mechanisms: (1) the nature of the sensorimotor adaptation process, involving multiple sensory feedbacks (visual, vestibular and proprioceptive), anticipatory control and large initial task errors and (2) the involvement of two phylogenetically old neural mechanisms, namely locomotion and fear. Fear-relevant mechanisms, which are notably resistant to cognitive control, may be recruited during the adaptation trials and contribute to the release of this LAE.
Collapse
Affiliation(s)
- K L Bunday
- Department of Movement and Balance, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Hospital, London, W6 8RF, UK
| | | | | | | | | | | |
Collapse
|
47
|
Lam T, Anderschitz M, Dietz V. Contribution of feedback and feedforward strategies to locomotor adaptations. J Neurophysiol 2006; 95:766-73. [PMID: 16424453 DOI: 10.1152/jn.00473.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to examine the strategies used by human subjects to adapt their walking pattern to a velocity-dependent resistance applied against hip and knee movements. Subjects first walked on a treadmill with their lower limbs strapped to an exoskeletal robotic gait orthosis with no resistance against leg motions (null condition). Afterward, a velocity-dependent resistance was applied against left hip and knee movements (force condition). Catch trials were interspersed throughout the experiment to track the development of adaptive changes in the walking pattern. After 188 steps in the force condition, subjects continued to step in the null condition for another 100 steps (washout period). Leg muscle activity and joint kinematics were recorded and analyzed. The adaptive modifications in the locomotor pattern suggest the involvement of both feedback and feedforward control strategies. Feedback-driven adaptations were reflected in increases in rectus femoris and tibialis anterior activity during swing, which occurred immediately, only in the presence of resistance, and not during the catch trials. Locomotor adaptations involving feedforward strategies were reflected in enhanced pre-swing activity in the biceps femoris and medial hamstrings muscles, which required experience and persisted in the catch trials. During washout subjects showed a gradual deadaptation of locomotor activity to control levels. In summary, adaptive changes in the walking pattern were driven by both feedback and feedforward adjustments in the walking pattern appropriate for overcoming the effects of resistance.
Collapse
Affiliation(s)
- Tania Lam
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| | | | | |
Collapse
|
48
|
Yang JF, Lamont EV, Pang MYC. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci 2006; 25:6869-76. [PMID: 16033896 PMCID: PMC6725348 DOI: 10.1523/jneurosci.1765-05.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The behavior of the pattern generator for walking in human infants (7-12 months of age) was studied by supporting the infants to step on a split-belt treadmill. The treadmill belts could be run at the same speed (tied-belt), different speeds, or in different directions (split-belt). We determined whether the legs could operate independently under these conditions, as demonstrated by taking different numbers of steps or by stepping in different directions. Video, surface electromyography, electrogoniometry, and force platform data were recorded. The majority of infants who could step under tied-belt conditions also stepped under split-belt conditions. During forward stepping at low speed differentials between the two belts (ratio, <4), infants adopted a step cycle duration that was intermediate between that expected from tied-belt stepping at each of the speeds. At large speed differentials between the two belts (ratio, 7-22), the infants took extra steps on the fast leg during the stance phase on the slow leg. When the two belts ran in opposite directions, one leg stepped forward, and the other stepped backward. During all forms of stepping, the legs maintained a reciprocal relationship, so that swing phase occurred in one leg at a time. Timing of muscle activity suggests a strong inhibition between the flexor-generating centers on each side and a weaker inhibition between the extensor-generating centers. The stepping behavior resembled that reported for other animals under similar conditions, suggesting that the pattern generator for each limb is autonomous but interacts with its counterpart for the contralateral limb.
Collapse
Affiliation(s)
- Jaynie F Yang
- Department of Physical Therapy, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, T6G 2G4, Canada.
| | | | | |
Collapse
|
49
|
Courtine G, Papaxanthis C, Schieppati M. Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Exp Brain Res 2005; 170:320-35. [PMID: 16328271 DOI: 10.1007/s00221-005-0215-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 08/29/2005] [Indexed: 11/28/2022]
Abstract
We describe the muscle synergies accompanying steering of walking along curved trajectories, in order to analyze the simultaneous control of progression and balance-threatening emerging forces. For this purpose, we bilaterally recorded in ten subjects the electromyograms (EMGs) of a representative sample of leg and trunk muscles (n=16) during continuous walking along one straight and two curved trajectories at natural speed. Curvilinear locomotion involved a graded, limb-dependent modulation of amplitude and timing of activity of the muscles of the legs and trunk. The turn-related modulation of the motor pattern was highly coordinated amongst muscles and body sides. For all muscles, linear relationships were detected between the spatial and temporal features of muscle EMG activity. The largest modulation of EMG was observed in gastrocnemius medialis and lateralis muscles, which showed opposite changes in timing and amplitude during curve-walking. Moreover, amplitude and timing characteristics of muscle activities were significantly correlated with the spatial and temporal gait adaptations that are associated with curvilinear locomotion. The present results reveal that fine-modulation of the muscle synergies underlying straight-ahead locomotion is enough to generate the adequate propulsive forces to steer walking and maintain balance. These findings suggest that the turn-related command operates by modulation of the phase relationships between the tightly coupled neuronal assemblies that drive motor neuron activity during walking. This would produce the invariant templates for locomotion kinematics that are at the base of human navigation in space.
Collapse
Affiliation(s)
- Grégoire Courtine
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia, Università di Pavia, Pavia, Italy
| | | | | |
Collapse
|
50
|
Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 2005; 94:2403-15. [PMID: 15958603 DOI: 10.1152/jn.00089.2005] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interlimb coordination is critically important during bipedal locomotion and often must be adapted to account for varying environmental circumstances. Here we studied adaptation of human interlimb coordination using a split-belt treadmill, where the legs can be made to move at different speeds. Human adults, infants, and spinal cats can alter walking patterns on a split-belt treadmill by prolonging stance and shortening swing on the slower limb and vice versa on the faster limb. It is not known whether other locomotor parameters change or if there is a capacity for storage of a new motor pattern after training. We asked whether adults adapt both intra- and interlimb gait parameters during split-belt walking and show aftereffects from training. Healthy subjects were tested walking with belts tied (baseline), then belts split (adaptation), and again tied (postadaptation). Walking parameters that directly relate to the interlimb relationship changed slowly during adaptation and showed robust aftereffects during postadaptation. These changes paralleled subjective impressions of limping versus no limping. In contrast, parameters calculated from an individual leg changed rapidly to accommodate split-belts and showed no aftereffects. These results suggest some independence of neural control of intra- versus interlimb parameters during walking. They also show that the adult nervous system can adapt and store new interlimb patterns after short bouts of training. The differences in intra- versus interlimb control may be related to the varying complexity of the parameters, task demands, and/or the level of neural control necessary for their adaptation.
Collapse
Affiliation(s)
- Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, USA
| | | | | |
Collapse
|