1
|
Zhao C, Keyak JH, Cao X, Sha Q, Wu L, Luo Z, Zhao LJ, Tian Q, Serou M, Qiu C, Su KJ, Shen H, Deng HW, Zhou W. Multi-view information fusion using multi-view variational autoencoder to predict proximal femoral fracture load. Front Endocrinol (Lausanne) 2023; 14:1261088. [PMID: 38075049 PMCID: PMC10710145 DOI: 10.3389/fendo.2023.1261088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Background Hip fracture occurs when an applied force exceeds the force that the proximal femur can support (the fracture load or "strength") and can have devastating consequences with poor functional outcomes. Proximal femoral strengths for specific loading conditions can be computed by subject-specific finite element analysis (FEA) using quantitative computerized tomography (QCT) images. However, the radiation and availability of QCT limit its clinical usability. Alternative low-dose and widely available measurements, such as dual energy X-ray absorptiometry (DXA) and genetic factors, would be preferable for bone strength assessment. The aim of this paper is to design a deep learning-based model to predict proximal femoral strength using multi-view information fusion. Results We developed new models using multi-view variational autoencoder (MVAE) for feature representation learning and a product of expert (PoE) model for multi-view information fusion. We applied the proposed models to an in-house Louisiana Osteoporosis Study (LOS) cohort with 931 male subjects, including 345 African Americans and 586 Caucasians. We performed genome-wide association studies (GWAS) to select 256 genetic variants with the lowest p-values for each proximal femoral strength and integrated whole genome sequence (WGS) features and DXA-derived imaging features to predict proximal femoral strength. The best prediction model for fall fracture load was acquired by integrating WGS features and DXA-derived imaging features. The designed models achieved the mean absolute percentage error of 18.04%, 6.84% and 7.95% for predicting proximal femoral fracture loads using linear models of fall loading, nonlinear models of fall loading, and nonlinear models of stance loading, respectively. Conclusion The proposed models are capable of predicting proximal femoral strength using WGS features and DXA-derived imaging features. Though this tool is not a substitute for predicting FEA using QCT images, it would make improved assessment of hip fracture risk more widely available while avoiding the increased radiation exposure from QCT.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Applied Computing, Michigan Technological University, Houghton, MI, United States
| | - Joyce H. Keyak
- Department of Radiological Sciences, Department of Biomedical Engineering, Department of Mechanical and Aerospace Engineering, and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Li Wu
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Zhe Luo
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Lan-Juan Zhao
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Qing Tian
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Michael Serou
- Department of Radiology, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Kuan-Jui Su
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Hui Shen
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Hong-Wen Deng
- Division of Biomedical Informatics and Genomics, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Weihua Zhou
- Department of Applied Computing, Michigan Technological University, Houghton, MI, United States
- Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, and Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
2
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
3
|
Said NM, Yassin F, Elkreem EA. Wnt10a missense gene polymorphism association with obesity risk: List of literature and a case-control study with Roc analysis for serum β-catenin level in Egypt. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Liu X, Zhang Y, Tian J, Gao F. Analyzing Genome-Wide Association Study Dataset Highlights Immune Pathways in Lip Bone Mineral Density. Front Genet 2020; 11:4. [PMID: 32211016 PMCID: PMC7077504 DOI: 10.3389/fgene.2020.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a common complex human disease. Until now, large-scale genome-wide association studies (GWAS) using single genetic variant have reported some novel osteoporosis susceptibility variants. However, these risk variants only explain a small proportion of osteoporosis genetic risk, and most genetic risk is largely unknown. Interestingly, the pathway analysis method has been used in investigation of osteoporosis mechanisms and reported some novel pathways. Until now, it remains unclear whether there are other risk pathways involved in BMD. Here, we selected a lip BMD GWAS with 301,019 SNPs in 5,858 Europeans, and conducted a gene-based analysis (SET SCREEN TEST) and a pathway-based analysis (WebGestalt). On the gene level, BMD susceptibility genes reported by previous GWAS were identified to be the top 10 significant signals. On the pathway level, we identified 27 significant KEGG pathways. Three immune pathways including T cell receptor signaling pathway (hsa04660), complement and coagulation cascades (hsa04610), and intestinal immune network for IgA production (hsa04672) are ranked the top three significant signals. Evidence from the PubMed and Google Scholar databases further supports our findings. In summary, our findings provide complementary information to these nine risk pathways.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yiwei Zhang
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jun Tian
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Gao
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Deng Y, Ma F, Ruiz-Ortega L, Peng Y, Tian Y, He W, Tang B. Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol 2019; 140:727-735. [DOI: 10.1016/j.ijbiomac.2019.08.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
6
|
Fenbo M, Xingyu X, Bin T. Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Carbohydr Polym 2019; 213:266-275. [DOI: 10.1016/j.carbpol.2019.02.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/19/2022]
|
7
|
Suskin J, Shapiro CL. Osteoporosis and musculoskeletal complications related to therapy of breast cancer. Gland Surg 2018; 7:411-423. [PMID: 30175057 DOI: 10.21037/gs.2018.07.05] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aromatase inhibitors (AIs) are the treatment of choice for the majority of postmenopausal women with estrogen receptor (ER) positive breast cancers in early and advanced stage settings. One of most frequent side effects of AIs is bone loss that is of sufficient magnitude to increase risk of osteoporotic fractures. Osteoporosis is primarily a complex genetic disease with few modifiable risk factors. As the lifespan increases, and breast mortality decreases, more women with breast cancer will be at risk of osteoporotic fractures, or falls that result in fractures. The screening, prevention, and treatment of osteoporosis do not differ in women with or without breast cancer. Rather, breast cancer treatments, including AIs, chemotherapy-induced ovarian failure, and gonadotropin-releasing hormone (GnRH) agonists, all decrease estrogen, which causes net bone resorption, leading some women to experience fracture. Occurring in about fifty-percent of women, AI-induced arthralgia is one of the most common side effects, and causes of nonadherence and discontinuation. Registry studies show that nonadherence and discontinuation may contribute to higher breast cancer mortality. Thus, understanding the mechanisms, risk factors, and interventions to mitigate symptoms of AI-induced arthralgia is a high priority.
Collapse
|
8
|
Wei J, Li M, Gao F, Zeng R, Liu G, Li K. Multiple analyses of large-scale genome-wide association study highlight new risk pathways in lumbar spine bone mineral density. Oncotarget 2017; 7:31429-39. [PMID: 27119226 PMCID: PMC5058768 DOI: 10.18632/oncotarget.8948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
Osteoporosis is a common human complex disease. It is mainly characterized by low bone mineral density (BMD) and low-trauma osteoporotic fractures (OF). Until now, a large proportion of heritability has yet to be explained. The existing large-scale genome-wide association studies (GWAS) provide strong support for the investigation of osteoporosis mechanisms using pathway analysis. Recent findings showed that different risk pathways may be involved in BMD in different tissues. Here, we conducted multiple pathway analyses of a large-scale lumbar spine BMD GWAS dataset (2,468,080 SNPs and 31,800 samples) using two published gene-based analysis software including ProxyGeneLD and the PLINK. Using BMD genes from ProxyGeneLD, we identified 51 significant KEGG pathways with adjusted P<0.01. Using BMD genes from PLINK, we identified 38 significant KEGG pathways with adjusted P<0.01. Interestingly, 33 pathways are shared in both methods. In summary, we not only identified the known risk pathway such as Wnt signaling, in which the top GWAS variants are significantly enriched, but also highlight some new risk pathways. Interestingly, evidence from further supports the involvement of these pathways in MBD.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ming Li
- Departmentof Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Gao
- Department of Trauma and Emergency Surgeon, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rong Zeng
- Department of Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiyou Liu
- Genome Analysis Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, The Clinical Medicine Research Institute & The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, Prachayasittikul V, Supokawej A. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett 2016; 21:12. [PMID: 28536615 PMCID: PMC5414670 DOI: 10.1186/s11658-016-0013-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.
Collapse
Affiliation(s)
- Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Tanwarat Sanvoranart
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kuneerat Nartprayut
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Natakarn Nimsanor
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| |
Collapse
|
10
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
11
|
Netto CC, Vieira VCC, Marinheiro LPF, Agellon S, Weiler H, Maróstica Jr. MR. Are skeletally mature female rats a suitable model to study osteoporosis? ACTA ACUST UNITED AC 2012; 56:259-64. [DOI: 10.1590/s0004-27302012000400007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/24/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVE: To analyze if female Wistar rats at 56 weeks of age are a suitable model to study osteoporosis. MATERIALS AND METHODS: Female rats with 6 and 36 weeks of age (n = 8 per group) were kept over a 20-week period and fed a diet for mature rodents complete in terms of Ca, phosphorous, and vitamin D. Excised femurs were measured for bone mass using dual-energy x-ray absorptiometry, morphometry, and biomechanical properties. The following serum mar-kers of bone metabolism were analyzed: parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor Κappa B ligand (RANKL), C-terminal peptides of type I collagen (CTX-I), total calcium, and alkaline phosphatase (ALP) activity. RESULTS: Rats at 56 weeks of age showed important bone metabolism differences when compared with the younger group, such as, highest diaphysis energy to failure, lowest levels of OC, CTX-I, and ALP, and elevated PTH, even with adequate dietary Ca. CONCLUSION: Rats at 26-week-old rats may be too young to study age-related bone loss, whereas the 56-week-old rats may be good models to represent the early stages of age-related changes in bone metabolism.
Collapse
|
12
|
Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G, MacDougald OA. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012; 50:477-89. [PMID: 21872687 PMCID: PMC3261372 DOI: 10.1016/j.bone.2011.08.010] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/22/2011] [Accepted: 08/06/2011] [Indexed: 12/21/2022]
Abstract
Wnt10b is an established regulator of mesenchymal stem cell (MSC) fate that inhibits adipogenesis and stimulates osteoblastogenesis, thereby impacting bone mass in vivo. However, downstream mechanisms through which Wnt10b exerts these effects are poorly understood. Moreover, whether other endogenous Wnt ligands also modulate MSC fate remains to be fully addressed. In this study, we identify Wnt6 and Wnt10a as additional Wnt family members that, like Wnt10b, are downregulated during development of white adipocytes in vivo and in vitro, suggesting that Wnt6 and/or Wnt10a may also inhibit adipogenesis. To assess the relative activities of Wnt6, Wnt10a and Wnt10b to regulate mesenchymal cell fate, we used gain- and loss-of function approaches in bipotential ST2 cells and in 3T3-L1 preadipocytes. Enforced expression of Wnt10a stabilizes β-catenin, suppresses adipogenesis and stimulates osteoblastogenesis to a similar extent as Wnt10b, whereas stable expression of Wnt6 has a weaker effect on these processes than Wnt10a or Wnt10b. In contrast, knockdown of endogenous Wnt6 is associated with greater preadipocyte differentiation and impaired osteoblastogenesis than knockdown of Wnt10a or Wnt10b, suggesting that, among these Wnt ligands, Wnt6 is the most potent endogenous regulator of MSC fate. Finally, we show that knockdown of β-catenin completely prevents the inhibition of adipogenesis and stimulation of osteoblast differentiation by Wnt6, Wnt10a or Wnt10b. Potential mechanisms whereby Wnts regulate fate of MSCs downstream of β-catenin are also investigated. In conclusion, this study identifies Wnt10a and Wnt6 as additional regulators of MSC fate and demonstrates that mechanisms downstream of β-catenin are required for Wnt6, Wnt10a and Wnt10b to influence differentiation of mesenchymal precursors.
Collapse
Affiliation(s)
- William P. Cawthorn
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Adam J. Bree
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Yao Yao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Baowen Du
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nahid Hemati
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Corresponding author: Department of Molecular and Integrative Physiology, University of Michigan Medical School, Brehm Center, 1000 Wall Street, Rm 6313, Ann Arbor, MI 48105. Tel: (734) 647-4880. Fax: (734) 232-8175
| |
Collapse
|
13
|
Abstract
Wnt10b is a member of the Wnt ligand gene family that encodes for secreted proteins, which activate the ancient and highly conserved Wnt signalling cascade. The Wnt pathway has been shown to be essential for embryonic development, tissue integrity, and stem cell activity, but if deregulated, also causes disease such as cancer. Although the 19 different Wnt ligands found in both human and mouse can activate several branches of the Wnt pathway, WNT10B specifically activates canonical Wnt/β-catenin signalling and thus triggers β-catenin/LEF/TCF-mediated transcriptional programs. In this review, we highlight the unique functions of WNT10B and mechanisms of how WNT10B acts in the immune system, mammary gland, adipose tissue, bone and skin. In these organs, WNT10B has been well established to be involved in signalling networks controlling stemness, pluripotency and cell fate decisions. Deregulation of these processes causes diseases such as breast cancer, obesity and osteoporosis. Compelling evidence suggests that WNT10B is a valuable candidate for the development of therapeutic regimens for human diseases.
Collapse
Affiliation(s)
- P Wend
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, USA
| | | | | | | |
Collapse
|
14
|
Patsch JM, Kohler T, Berzlanovich A, Muschitz C, Bieglmayr C, Roschger P, Resch H, Pietschmann P. Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J Bone Miner Res 2011; 26:1584-92. [PMID: 21308775 DOI: 10.1002/jbmr.344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Male idiopathic osteoporosis (MIO) is a metabolic bone disease that is characterized by low bone mass, microstructural alterations, and increased fracture risk in otherwise healthy men. Although the detailed pathophysiology of MIO has yet to be clarified, evidence increasingly suggests an osteoblastic defect as the underlying cause. In this study we tested the hypothesis that the expression profile of certain osteoblastic or osteoblast-related genes (ie, WNT10B, RUNX2, Osterix, Osteocalcin, SOST, RANKL, and OPG) is different in iliac crest biopsies of MIO patients when compared with healthy controls. Furthermore, we investigated the relation of local gene expression characteristics with histomorphometric, microstructural, and clinical features. Following written informed consent and diligent clinical patient characterization, iliac crest biopsies were performed in nine men. While RNA extraction, reverse-transcription, and real-time polymerase chain reactions (PCRs) were performed on one biopsy, a second biopsy of each patient was submitted for histomorphometry and micro-computed tomography (µCT). Age-matched bone samples from forensic autopsies served as controls. MIO patients displayed significantly reduced WNT10B, RUNX2, RANKL, and SOST expression. Performing µCT for the first time in MIO biopsies, we found significant decreases in trabecular number and connectivity density. Trabecular separation was increased significantly, but trabecular thickness was similar in both groups. Histomorphometry revealed decreased BV/TV and osteoid volume and fewer osteoclasts in MIO. By providing evidence for reduced local WNT10B, RUNX2, and RANKL gene expression and histomorphometric low turnover, our data support the osteoblast dysfunction model discussed for MIO. Further, MIO seems to lead to a different microstructural pathology than age-related bone loss.
Collapse
Affiliation(s)
- Janina M Patsch
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim IC, Cha MH, Kim DM, Lee H, Moon JS, Choi SM, Kim KS, Yoon Y. A functional promoter polymorphism -607G>C of WNT10B is associated with abdominal fat in Korean female subjects. J Nutr Biochem 2010; 22:252-8. [PMID: 20579865 DOI: 10.1016/j.jnutbio.2010.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
WNT10B has been implicated as a potential regulator of adipogenesis in cellular and animal models of obesity. In this study, we attempted to characterize the associations between common genetic polymorphisms of WNT10B and fat accumulation in a sample of 1029 Korean female subjects. Direct sequencing of genomic DNAs of 45 subjects identified six common single-nucleotide polymorphisms (SNPs) of WNT10B, which were in almost complete linkage disequilibrium. Among the six SNPs, -607G>C (rs833840) showed differential nuclear factor binding in an electrophoretic mobility shift assay and differential promoter activity in a reporter assay, implicating it as a functional regulatory SNP. When body compositions of the subjects determined using bio-impedance analysis were compared according to their -607G>C genotype, only body fat mass showed a significant association. Body masses of protein, mineral and water showed no association. For more accurate evaluation of the effects of -607G>C genotype on body fat, cross-sectional fat areas of the subjects measured by abdominal computed tomography were compared. Genotype of -607G>C was significantly associated with abdominal total fat and abdominal subcutaneous fat areas (P=.009 and P=.007 in recessive model, respectively). Of the 1029 subjects, 576 were treated with a 1 month very low calorie diet and changes of body weight and composition were compared with -607G>C genotype. No significant associations were evident. This study is the first report of the association of common genetic polymorphism of WNT10B with human fat accumulation.
Collapse
Affiliation(s)
- Il Chul Kim
- Department of Biology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|