1
|
Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin Cell Dev Biol 2024; 155:58-65. [PMID: 37423854 PMCID: PMC11115190 DOI: 10.1016/j.semcdb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States
| |
Collapse
|
2
|
Niu J, Liu Y, Wang J, Wang H, Zhao Y, Zhang M. Thrombospondin-2 acts as a critical regulator of cartilage regeneration: A review. Medicine (Baltimore) 2023; 102:e33651. [PMID: 37115081 PMCID: PMC10145989 DOI: 10.1097/md.0000000000033651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The degeneration of articular cartilage tissue is the most common cause of articular cartilage diseases such as osteoarthritis. There are limitations in chondrocyte self-renewal and conventional treatments. During cartilage regeneration and repair, growth factors are typically used to induce cartilage differentiation in stem cells. The role of thrombospondin-2 in cartilage formation has received much attention in recent years. This paper reviews the role of thrombospondin-2 in cartilage regeneration and the important role it plays in protecting cartilage from damage caused by inflammation or trauma and in the regenerative repair of cartilage by binding to different receptors and activating different intracellular signaling pathways. These studies provide new ideas for cartilage repair in clinical settings.
Collapse
Affiliation(s)
- Jing Niu
- The College of Life Sciences and Medicine, Northwest University, Xi’an, P. R. China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Yanli Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Junjun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Hui Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
- Department of Anesthesiology and Perioperative Medicine, Xi’an People’s Hospital (Xi’an Fourth Hospital), Northwest University, Xi’an, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
| |
Collapse
|
3
|
Alford AI, Stephan C, Kozloff KM, Hankenson KD. Compound deletion of thrombospondin-1 and -2 results in a skeletal phenotype not predicted by the single gene knockouts. Bone 2021; 153:116156. [PMID: 34425286 PMCID: PMC8478904 DOI: 10.1016/j.bone.2021.116156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
The trimeric thrombospondin homologs, TSP1 and TSP2, are both components of bone tissue and contribute in redundant and distinct ways to skeletal physiology. TSP1-null mice display increased femoral cross-sectional area and thickness due to periosteal expansion, as well as diminished matrix quality and impaired osteoclast function. TSP2-null mice display increased femoral cross-sectional thickness and reduced marrow area due to increased endosteal osteoblast activity, with very little periosteal expansion. Osteoblast lineage cells are reduced in TSP2-null mice, but not in TSP1-null. The functional effects of combined TSP1 and TSP2 deficiency remain to be elucidated. Here, we examined the spectrum of detergent soluble proteins in diaphyseal cortical bone of growing (6-week old) male and female mice deficient in both thrombospondins (double knockout (DKO)). Of 3429 detected proteins, 195 were differentially abundant in both male and female DKO bones. Physiologically relevant annotation terms identified by Ingenuity Pathway Analysis included "ECM degradation" and "Quantity of Monocytes." Manual inspection revealed that a number of proteins with shared expression among osteoclasts and osteocytes were reduced in DKO bones. To associate changes in protein content with phenotype, we examined 12-week old male and female DKO and WT mice. DKO mice were smaller than WT and in male DKO, femoral cross section area was reduced. Some of the male DKO femora also had a flattened, less circular cross-section. Male DKO bones were less stiff in bending and they displayed reduced ultimate load. Displacements at yield load and at max load were both elevated in male DKO. However, the ratios of post-yield to pre-yield displacements significantly diminished in DKO suggesting proportionally reduced post-yield behavior. Male DKO mice also exhibited reductions in trabecular bone mass, which were surprisingly associated with equivalent osteoblast numbers and accordingly increased osteoblast surface. Marrow-derived colony forming unit-fibroblastic was reduced in male and female DKO mice. Together our data suggest that when both TSP1 and TSP2 are absent, a unique, sex-specific bone phenotype not predicted by the single knockouts, is manifested.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States.
| | - Chris Stephan
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Gohel N, Senos R, Goldstein SA, Hankenson KD, Hake ME, Alford AI. Evaluation of global gene expression in regenerate tissues during Masquelet treatment. J Orthop Res 2020; 38:2120-2130. [PMID: 32233004 PMCID: PMC7494657 DOI: 10.1002/jor.24676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
The Masquelet induced-membrane (IM) technique is indicated for large segmental bone defects. Attributes of the IM and local milieu that contribute to graft-to-bone union are unknown. Using a rat model, we compared global gene expression profiles in critically sized femoral osteotomies managed using a cement spacer as per Masquelet to those left empty. At the end of the experiment, IM and bone adjacent to the spacer were collected from the Masquelet side. Nonunion tissue in the defect and bone next to the empty defect were collected from the contralateral side. Tissues were subjected to RNA isolation, sequencing, and differential expression analysis. Cell type enrichment analysis suggested the IM and the bone next to the polymethylmethacrylate (PMMA) spacer were comparatively enriched for osteoblastic genes. The nonunion environment was comparatively enriched for innate and adaptive immune cell markers, but only macrophages were evident in the Masquelet context. iPathwayGuide was utilized to identify cell signaling pathways and protein interaction networks enriched in the Masquelet environment. For IM vs nonunion false-discovery rate correction of P values rendered overall pathway differences nonsignificant, and so only protein interaction networks are presented. For the bone comparison, substantial enrichment of pathways and networks known to contribute to osteogenic mechanisms was revealed. Our results suggest that the PMMA spacer affects the cut bone ends that are in contact with it and at the same time induces the foreign body reaction and formation of the IM. B cells in the empty defect suggest a chronic inflammatory response to a large segmental osteotomy.
Collapse
Affiliation(s)
- Nishant Gohel
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Rafael Senos
- Department of Morphology, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| | - Steven A. Goldstein
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark E. Hake
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan.,Address correspondence to Mark E. Hake: Department of Orthopaedic Surgery, University of Michigan School of Medicine, 1500 E Medical Center Drive, 2912 Taubman Center SPC 5328; Ann Arbor, MI 48109; fax: +1-734-647-3277; telephone: +734-936-9839;
| | - Andrea I. Alford
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan.,Address correspondence to Andrea I. Alford: Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI, 48109; fax: +1-734 -647-0003; telephone: +1-734-615-6104;
| |
Collapse
|
5
|
Shearer D, Mervis MO, Manley E, Reddy AB, Alford AI. TSP1 and TSP2 deficiencies affect LOX protein distribution in the femoral diaphysis and pro-peptide removal in marrow-derived mesenchymal stem cells in vitro. Connect Tissue Res 2019; 60:495-506. [PMID: 30939949 DOI: 10.1080/03008207.2019.1593391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thrombospondin-1 and 2 have each been implicated in collagen fibrillogenesis. We addressed the possibility that deficits in lysyl oxidase (LOX) contribute to the extracellular matrix (ECM) phenotype of TSP-deficient bone. We examined detergent insoluble (mature cross-linked) and soluble (newly secreted) ECM fractions prepared from diaphyseal cortical bone. Detergent-insoluble hydroxyproline content, an indicator of cross-linked collagen content and LOX function, was reduced in female TSP-deficient bones. In male diaphyses, only TSP2 deficiency affected insoluble hydroxyproline content. Western blot suggested that removal of the LOX-pro-peptide (LOPP), an indication of LOX activation, was not affected by TSP status. Instead, the distribution of pro-LOX and mature LOX between immature and mature ECM was altered by TSP-status. LOX was also examined in primary marrow-derived mesenchymal stem cells (MSC) treated with ascorbate. Relative LOPP levels were elevated compared to WT in MSC conditioned medium from female TSP-deficient mice. When cells were serum starved to limit LOX pro-peptide removal, pro-LOX levels were elevated in TSP2-/- cells compared to wild-type. This phenotype was associated with a transient increase in BMP1 levels in TSP2-/- conditioned medium. TSP2 was detected in bone tissue and osteoblast cell culture. TSP1 was only detected in insoluble ECM prepared from WT diaphyseal bone samples. Our data suggest that the trimeric thrombospondins contribute to bone matrix quality by regulating the distribution of pro and mature LOX between newly secreted, immature ECM and mature, cross-linked ECM.
Collapse
Affiliation(s)
- Dylan Shearer
- a Department of Orthopaedic Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Madison O Mervis
- a Department of Orthopaedic Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Eugene Manley
- a Department of Orthopaedic Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Anita B Reddy
- a Department of Orthopaedic Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Andrea I Alford
- a Department of Orthopaedic Surgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
6
|
Ghorbani A, Shafiee-Nick R, Zojaji SA, Rajabi-Mashhadi MT. Physiological effects of proinsulin-connecting peptide in human subcutaneous adipose tissue. Physiol Int 2017. [PMID: 28648118 DOI: 10.1556/2060.104.2017.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies suggest that proinsulin-connecting peptide (C-peptide) may exhibit characteristics of a hormone and show physiological functions in various tissues. This study was aimed to determine whether C-peptide could be involved in the regulation of lipolysis, adiponectin release, and function of mesenchymal stem cells (MSCs) in adipose tissue. Human subcutaneous adipose tissue was cultured in the presence of C-peptide. The level of lipolysis was determined by glycerol measurement in the conditioned media. Effect of C-peptide on adiponectin secretion was evaluated in differentiated adipocytes. The adipogenic and osteogenic abilities of adipose MSCs were evaluated using oil red and alizarin red staining, respectively. The tetrazolium bromide test was conducted for evaluating the effect of C-peptide on MSCs proliferation. C-peptide induced a significant decrease in basal lipolysis at concentrations of 8 and 16 nM (p < 0.05). It had no significant effects on isoproterenol-stimulated lipolysis, adiponectin secretion, and adipogenic or osteogenic differentiation of MSCs. At a concentration of 4 nM, this peptide significantly increased the proliferative capability of MSCs (p < 0.05). These results suggest that C-peptide has some physiological effects in human subcutaneous adipose tissue and contributes to the regulation of basal lipolysis and pool of MSCs.
Collapse
Affiliation(s)
- A Ghorbani
- 1 Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences , Mashhad, Iran
| | - R Shafiee-Nick
- 1 Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences , Mashhad, Iran.,2 Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - S A Zojaji
- 2 Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - M T Rajabi-Mashhadi
- 3 Department of Surgery, Omid Hospital, Mashhad University of Medical Sciences , Mashhad, Iran.,4 Endoscopic & Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
7
|
Jeong SY, Ha J, Lee M, Jin HJ, Kim DH, Choi SJ, Oh W, Yang YS, Kim JS, Kim BG, Chang JH, Cho DH, Jeon HB. Autocrine Action of Thrombospondin-2 Determines the Chondrogenic Differentiation Potential and Suppresses Hypertrophic Maturation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33:3291-303. [PMID: 26235673 DOI: 10.1002/stem.2120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that mesenchymal stem cell (MSC)-based therapies have varying efficacies for the treatment of various diseases, including cartilage defects. In this study, we demonstrated that the chondrogenic differentiation potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) obtained from different individual donors varies, and we investigated the molecular basis for this variation. Microarray gene expression analysis identified thrombospondin-2 (TSP2) as a candidate gene underlying the interindividual variation in the chondrogenic differentiation potential of hUCB-MSCs. To assess the association between TSP-2 and the differentiation potential, we evaluated chondrogenic differentiation of hUCB-MSCs treated with TSP2 siRNA. In addition, we studied the effect of supplementing exogenous recombinant TSP-2 on TSP2 siRNA-treated hUCB-MSCs. We found that TSP-2 autocrinally promoted chondrogenic differentiation of hUCB-MSCs via the Notch signaling pathway, which was confirmed in MSCs from other sources such as bone marrow and adipose tissue. Interestingly, we observed that TSP-2 attenuated hypertrophy, which inevitably occurs during chondrogenic differentiation of hUCB-MSCs. Our findings indicated that the variable chondrogenic differentiation potential of MSCs obtained from different donors is influenced by the TSP-2 level in the differentiating cells. Thus, the TSP-2 level can be used as a marker to select MSCs with superior chondrogenic differentiation potential for use in cartilage regeneration therapy.
Collapse
Affiliation(s)
- Sang Young Jeong
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Jueun Ha
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Miyoung Lee
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Hye Jin Jin
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Dong Hyun Kim
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Byung-Gyu Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, School of Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology, Teachers College, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Manley E, Perosky JE, Khoury BM, Reddy AB, Kozloff KM, Alford AI. Thrombospondin-2 deficiency in growing mice alters bone collagen ultrastructure and leads to a brittle bone phenotype. J Appl Physiol (1985) 2015; 119:872-81. [PMID: 26272319 DOI: 10.1152/japplphysiol.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/06/2015] [Indexed: 01/15/2023] Open
Abstract
Thrombospondin-2 (TSP2) is a matricellular protein component of the bone extracellular matrix. Long bones of adult TSP2-deficient mice have increased endosteal bone thickness due to expansion of the osteoblast progenitor cell pool, and these cells display deficits in osteoblastic potential. Here, we investigated the effects of TSP2 deficiency on whole bone geometric and mechanical properties in growing 6-wk-old male and female wild-type and TSP2-knockout (KO) mice. Microcomputed tomography and mechanical testing were conducted on femora and L2 vertebrae to assess morphology and whole bone mechanical properties. In a second series of experiments, femoral diaphyses were harvested from wild-type and TSP2-KO mice. Detergent-soluble type I collagen content was determined by Western blot of right femora. Total collagen content was determined by hydroxyproline analysis of left femora. In a third series of experiments, cortical bone was dissected from the anterior and posterior aspects of the femoral middiaphysis and imaged by transmission electron microscopy to visualize collagen fibrils. Microcomputed tomography revealed minimal structural effects of TSP2 deficiency. TSP2 deficiency imparted a brittle phenotype on cortical bone. Femoral tissue mineral density was not affected by TSP2 deficiency. Instead, transmission electron microscopy revealed less intensely stained collagen fibrils with altered morphology in the extracellular matrix assembled by osteoblasts on the anterior surface of TSP2-KO femora. Femoral diaphyseal bone displayed comparable amounts of total collagen, but the TSP2-KO bones had higher levels of detergent-extractable type I collagen. Together, our data suggest that TSP2 is required for optimal collagen fibrillogenesis in bone and thereby contributes to normal skeletal tissue quality.
Collapse
Affiliation(s)
- Eugene Manley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
9
|
Jeong SY, Kim DH, Ha J, Jin HJ, Kwon SJ, Chang JW, Choi SJ, Oh W, Yang YS, Kim G, Kim JS, Yoon JR, Cho DH, Jeon HB. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells 2014; 31:2136-48. [PMID: 23843355 DOI: 10.1002/stem.1471] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/11/2013] [Accepted: 05/20/2013] [Indexed: 12/15/2022]
Abstract
Increasing evidence indicates that the secretome of mesenchymal stem cells (MSCs) has therapeutic potential for the treatment of various diseases, including cartilage disorders. However, the paracrine mechanisms underlying cartilage repair by MSCs are poorly understood. Here, we show that human umbilical cord blood-derived MSCs (hUCB-MSCs) promoted differentiation of chondroprogenitor cells by paracrine action. This paracrine effect of hUCB-MSCs on chondroprogenitor cells was increased by treatment with synovial fluid (SF) obtained from osteoarthritis (OA) patients but was decreased by SF of fracture patients, compared to that of an untreated group. To identify paracrine factors underlying the chondrogenic effect of hUCB-MSCs, the secretomes of hUCB-MSCs stimulated by OA SF or fracture SF were analyzed using a biotin label-based antibody array. Among the proteins increased in response to these two kinds of SF, thrombospondin-2 (TSP-2) was specifically increased in only OA SF-treated hUCB-MSCs. In order to determine the role of TSP-2, exogenous TSP-2 was added to a micromass culture of chondroprogenitor cells. We found that TSP-2 had chondrogenic effects on chondroprogenitor cells via PKCα, ERK, p38/MAPK, and Notch signaling pathways. Knockdown of TSP-2 expression on hUCB-MSCs using small interfering RNA abolished the chondrogenic effects of hUCB-MSCs on chondroprogenitor cells. In parallel with in vitro analysis, the cartilage regenerating effect of hUCB-MSCs and TSP-2 was also demonstrated using a rabbit full-thickness osteochondral-defect model. Our findings suggested that hUCB-MSCs can stimulate the differentiation of locally presented endogenous chondroprogenitor cells by TSP-2, which finally leads to cartilage regeneration.
Collapse
Affiliation(s)
- Sang Young Jeong
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seoul, Republic of Korea; Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-Do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alford AI, Golicz AZ, Cathey AL, Reddy AB. Thrombospondin-2 facilitates assembly of a type-I collagen-rich matrix in marrow stromal cells undergoing osteoblastic differentiation. Connect Tissue Res 2013; 54:275-82. [PMID: 23763373 PMCID: PMC4091640 DOI: 10.3109/03008207.2013.811236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the effects of Thrombospondin-2 (TSP2) deficiency on assembly of collagenous extracellular matrix (ECM) by primary marrow-derived mesenchymal stromal cells (MSC) undergoing osteoblast differentiation in culture. After 30 d, wild-type cells had accumulated and mineralized a collagen-rich insoluble matrix, whereas the TSP2-null cultures contained markedly lower amounts of matrix collagen and displayed reduced mineral. Differences in matrix collagen were seen as early as day 9, at which time wild-type cultures contained more total collagen per cell than did TSP2-null cells. Collagen was unevenly distributed amongst different extracellular compartments in the two cell-types. Collagen levels in conditioned medium of wild-type cells were higher than those of TSP2-null cells, but were roughly equivalent in the acid-soluble, newly cross-linked matrixes. Conversely, the mature, cross-linked acid-insoluble matrix layer of wild-type cells contained about twice as much collagen as TSP2-null cell-derived matrix. Western blot analysis of type-I collagen in detergent-soluble and insoluble matrix fractions supported the premise that matrix collagen levels were reduced in TSP2-null MSC undergoing osteoblastic differentiation in vitro. Western blot and immunofluorescent analysis suggested that assembly of fibronectin into matrix was not affected by TSP2 deficiency. Instead, western blots of conditioned medium demonstrated a marked reduction in mature, fully processed type-I collagen in the absence of TSP2. Our data suggest that in the context of osteoblast differentiation, TSP2 promotes the assembly of a type-I collagen-rich matrix by facilitating pro-collagen processing.
Collapse
Affiliation(s)
- Andrea I. Alford
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Andrew Z. Golicz
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Amber Lee Cathey
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Anita B. Reddy
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Nguyen J, Tang SY, Nguyen D, Alliston T. Load regulates bone formation and Sclerostin expression through a TGFβ-dependent mechanism. PLoS One 2013; 8:e53813. [PMID: 23308287 PMCID: PMC3538690 DOI: 10.1371/journal.pone.0053813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Bone continually adapts to meet changing physical and biological demands. Osteoblasts, osteoclasts, and osteocytes cooperate to integrate these physical and biochemical cues to maintain bone homeostasis. Although TGFβ acts on all three of these cell types to maintain bone homeostasis, the extent to which it participates in the adaptation of bone to mechanical load is unknown. Here, we investigated the role of the TGFβ pathway in load-induced bone formation and the regulation of Sclerostin, a mechanosensitive antagonist of bone anabolism. We found that mechanical load rapidly represses the net activity of the TGFβ pathway in osteocytes, resulting in reduced phosphorylation and activity of key downstream effectors, Smad2 and Smad3. Loss of TGFβ sensitivity compromises the anabolic response of bone to mechanical load, demonstrating that the mechanosensitive regulation of TGFβ signaling is essential for load-induced bone formation. Furthermore, sensitivity to TGFβ is required for the mechanosensitive regulation of Sclerostin, which is induced by TGFβ in a Smad3-dependent manner. Together, our results show that physical cues maintain bone homeostasis through the TGFβ pathway to regulate Sclerostin expression and the deposition of new bone.
Collapse
Affiliation(s)
- Jacqueline Nguyen
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Nguyen
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Tamara Alliston
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|