1
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
3
|
Miszuk J, Sun H. Biomimetic Therapeutics for Bone Regeneration: A Perspective on Antiaging Strategies. Macromol Biosci 2024; 24:e2300248. [PMID: 37769439 PMCID: PMC10922069 DOI: 10.1002/mabi.202300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Advances in modern medicine and the significant reduction in infant mortality have steadily increased the population's lifespan. As more and more people in the world grow older, incidence of chronic, noncommunicable disease is anticipated to drastically increase. Recent studies have shown that improving the health of the aging population is anticipated to provide the most cost-effective and impactful improvement in quality of life during aging-driven disease. In bone, aging is tightly linked to increased risk of fracture, and markedly decreased regenerative potential, deeming it critical to develop therapeutics to improve aging-driven bone regeneration. Biomimetics offer a cost-effective method in regenerative therapeutics for bone, where there are numerous innovations improving outcomes in young models, but adapting biomimetics to aged models is still a challenge. Chronic inflammation, accumulation of reactive oxygen species, and cellular senescence are among three of the more unique challenges facing aging-induced defect repair. This review dissects many of the innovative biomimetic approaches research groups have taken to tackle these challenges, and discusses the further uncertainties that need to be addressed to push the field further. Through these research innovations, it can be noted that biomimetic therapeutics hold great potential for the future of aging-complicated defect repair.
Collapse
Affiliation(s)
- Jacob Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA, 52242, United States
| |
Collapse
|
4
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
5
|
Capo V, Abinun M, Villa A. Osteoclast rich osteopetrosis due to defects in the TCIRG1 gene. Bone 2022; 165:116519. [PMID: 35981697 DOI: 10.1016/j.bone.2022.116519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Discovery that mutations in TCIRG1 (also known as Atp6i) gene are responsible for most instances of autosomal recessive osteopetrosis (ARO) heralded a new era for comprehension and treatment of this phenotypically heterogeneous rare bone disease. TCIRG1 encodes the a3 subunit, an essential isoform of the vacuolar ATPase proton pump involved in acidification of the osteoclast resorption lacuna and in secretory lysosome trafficking. TCIRG1 defects lead to inefficient bone resorption by nonfunctional osteoclasts seen in abundance on bone marrow biopsy, delineating this ARO as 'osteoclast-rich'. Presentation is usually in early childhood and features of extramedullary haematopoiesis (hepatosplenomegaly, anaemia, thrombocytopenia) due to bone marrow fibrosis, and cranial nerve impingement (blindness in particular). Impaired dietary calcium uptake due to high pH causes the co-occurrence of rickets, described as "osteopetrorickets". Osteoclast dysfunction leads to early death if untreated, and allogeneic haematopoietic stem cell transplantation is currently the treatment of choice. Studies of patients as well as of mouse models carrying spontaneous (the oc/oc mouse) or targeted disruption of Atp6i (TCIRG1) gene have been instrumental providing insight into disease pathogenesis and development of novel cellular therapies that exploit gene correction.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Mario Abinun
- Children's Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
6
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
7
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Sabir A, Irving M. Clinical trials in skeletal dysplasia: a paradigm for treating rare diseases. Br Med Bull 2021; 139:16-35. [PMID: 34453435 DOI: 10.1093/bmb/ldab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Genetic skeletal dysplasia conditions (GSDs) account for 5% of all birth defects. Until recently, targeted treatments were only available for select few conditions; 1 however, opportunities arising from developments in molecular diagnostic technologies are now leading to unparalleled therapeutic advances. This review explores current GSD clinical trials, their challenges and the hopes for the future. SOURCES OF DATA A systematic literature search of relevant original articles, reviews and meta-analyses restricted to English was conducted using PubMed up to February 2020 regarding emerging GSD therapies. AREAS OF AGREEMENT We discuss current clinical trials for in achondroplasia, osteopetrosis, osteogenesis imperfecta, hypophosphataemic rickets, hypophosphatasia and fibrous ossificans progressiva. AREAS OF CONTROVERSY We explore challenges in GSD drug development from clinician input, cost-effectiveness and evidenced-based practice. GROWING POINTS We explore opportunities brought by earlier diagnosis, its treatment impact and the challenges of gene editing. AREAS TIMELY FOR DEVELOPING RESEARCH We horizon scan for future clinical trials.
Collapse
Affiliation(s)
- Ataf Sabir
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Clinical Genetics, Birmingham Women's and Children's Hospital, Mindelsohn Way, Birmingham B15 2TG, UK and University of Birmingham and Birmingham Health Partners, Edgbaston, Birmingham B152TT, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Department of Medical and Molecular Genetics, Faculty of Life Sciences, King's College London, Strand London WC2R 2LS, UK
| |
Collapse
|
9
|
Matthiesen CL, Hu L, Torslev AS, Poulsen ET, Larsen UG, Kjaer-Sorensen K, Thomsen JS, Brüel A, Enghild JJ, Oxvig C, Petersen SV. Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization. Free Radic Biol Med 2021; 164:399-409. [PMID: 33476796 DOI: 10.1016/j.freeradbiomed.2021.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.
Collapse
Affiliation(s)
| | - Lili Hu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Sun-Kyeong Lee
- Department of Medicine, UCONN Center on Aging, University Connecticut Health Center, Farmington, CT 06030, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Bone phenotypes in rheumatology - there is more to bone than just bone. BMC Musculoskelet Disord 2020; 21:789. [PMID: 33248451 PMCID: PMC7700716 DOI: 10.1186/s12891-020-03804-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis, rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis, all have one clear common denominator; an altered turnover of bone. However, this may be more complex than a simple change in bone matrix and mineral turnover. While these diseases share a common tissue axis, their manifestations in the area of pathology are highly diverse, ranging from sclerosis to erosion of bone in different regions. The management of these diseases will benefit from a deeper understanding of the local versus systemic effects, the relation to the equilibrium of the bone balance (i.e., bone formation versus bone resorption), and the physiological and pathophysiological phenotypes of the cells involved (e.g., osteoblasts, osteoclasts, osteocytes and chondrocytes). For example, the process of endochondral bone formation in chondrocytes occurs exists during skeletal development and healthy conditions, but also in pathological conditions. This review focuses on the complex molecular and cellular taxonomy of bone in the context of rheumatological diseases that alter bone matrix composition and maintenance, giving rise to different bone turnover phenotypes, and how biomarkers (biochemical markers) can be applied to potentially describe specific bone phenotypic tissue profiles.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The goal of this review is to give an overview of diagnosis and up-to-date management of major pediatric metabolic bone diseases that are associated with bone fragility, including nutritional rickets, hypophosphatemic rickets, osteogenesis imperfecta, Ehlers--Danlos syndrome, Marfan's syndrome, hypophosphatasia, osteopetrosis and skeletal fluorosis. RECENT FINDINGS During the past decade, a number of advanced treatment options have been introduced and shown to be an effective treatment in many metabolic bone disorders, such as burosumab for hypophosphatemic rickets and asfotase alfa for hypophosphatasia. On the other hand, other disorders, such as nutritional rickets and skeletal fluorosis continue to be underrecognized in many regions of the world. Genetic disorders of collagen-elastin, such as osteogenesis imperfecta, Ehlers--Danlos syndrome and Marfan's syndrome are also associated with skeletal fragility, which can be misdiagnosed as caused by non-accidental trauma/child abuse. SUMMARY It is essential to provide early and accurate diagnosis and treatment for pediatric patients with metabolic bone disorders in order to maintain growth and development as well as prevent fractures and metabolic complications.
Collapse
|
13
|
Sato D, Takahata M, Ota M, Fukuda C, Hasegawa T, Yamamoto T, Amizuka N, Tsuda E, Okada A, Hiruma Y, Fujita R, Iwasaki N. Siglec-15-targeting therapy protects against glucocorticoid-induced osteoporosis of growing skeleton in juvenile rats. Bone 2020; 135:115331. [PMID: 32217159 DOI: 10.1016/j.bone.2020.115331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Effective treatment of juvenile osteoporosis, which is frequently caused by glucocorticoid (GC) therapy, has not been established due to limited data regarding the efficacy and adverse effects of antiresorptive therapies on the growing skeleton. We previously demonstrated that sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) targeting therapy, which interferes with osteoclast terminal differentiation in the secondary, but not primary, spongiosa, increased bone mass without adverse effects on skeletal growth, whereas bisphosphonate, a first-line treatment for osteoporosis, increased bone mass but impaired long bone growth in healthy growing rats. In the present study, we investigated the efficacy of anti-Siglec-15 neutralizing antibody (Ab) therapy against GC-induced osteoporosis in a growing rat model. GC decreased bone mass and deteriorated mechanical properties of bone, due to a disproportionate increase in bone resorption. Both anti-Siglec-15 Ab and alendronate (ALN) showed protective effects against GC-induced bone loss by suppressing bone resorption, which was more pronounced with anti-Siglec-15 Ab treatment, possibly due to a reduced negative impact on bone formation. ALN induced histological abnormalities in the growth plate and morphological abnormalities in the long bone metaphysis but did not cause significant growth retardation. Conversely, anti-Siglec-15 Ab did not show any negative impact on the growth plate and preserved normal osteoclast and chondroclast function at the primary spongiosa. Taken together, these results suggest that anti-Siglec-15 targeting therapy could be a safe and efficacious prophylactic therapy for GC-induced osteoporosis in juvenile patients.
Collapse
Affiliation(s)
- Dai Sato
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Masahiro Ota
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Chie Fukuda
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomoka Hasegawa
- Hokkaido University, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Sapporo, Japan
| | - Tomomaya Yamamoto
- Hokkaido University, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Sapporo, Japan
| | - Norio Amizuka
- Hokkaido University, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Sapporo, Japan
| | - Eisuke Tsuda
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Akiko Okada
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshiharu Hiruma
- Pharmacovigilance Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryo Fujita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
14
|
Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4791786. [PMID: 32190665 PMCID: PMC7073503 DOI: 10.1155/2020/4791786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.
Collapse
|
15
|
Sabir AH, Cole T. The evolving therapeutic landscape of genetic skeletal disorders. Orphanet J Rare Dis 2019; 14:300. [PMID: 31888683 PMCID: PMC6937740 DOI: 10.1186/s13023-019-1222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rare bone diseases account for 5% of all birth defects yet very few have personalised treatments. Developments in genetic diagnosis, molecular techniques and treatment technologies however, are leading to unparalleled therapeutic advance. This review explores the evolving therapeutic landscape of genetic skeletal disorders (GSDs); the key conditions and there key differentials. METHODS A retrospective literature based review was conducted in December 2018 using a systematic search strategy for relevant articles and trials in Pubmed and clinicaltrials.gov respectively. Over 140 articles and 80 trials were generated for review. RESULTS Over 20 personalised therapies are discussed in addition to several novel disease modifying treatments in over 25 GSDs. Treatments discussed are at different stages from preclinical studies to clinical trials and approved drugs, including; Burosumab for X-linked hypophosphatemia, Palovarotene for Hereditary Multiple Exostoses, Carbamazepine for Metaphyseal Chondrodysplasia (Schmid type), Lithium carbonate and anti-sclerostin therapy for Osteoporosis Pseudoglioma syndrome and novel therapies for Osteopetrosis. We also discuss therapeutic advances in Achondroplasia, Osteogenesis Imperfecta (OI), Hypophosphotasia (HPP), Fibrodysplasia Ossificans Progressiva, and RNA silencing therapies in preclinical studies for OI and HPP. DISCUSSION It is an exciting time for GSD therapies despite the challenges of drug development in rare diseases. In discussing emerging therapies, we explore novel approaches to drug development from drug repurposing to in-utero stem cell transplants. We highlight the improved understanding of bone pathophysiology, genetic pathways and challenges of developing gene therapies for GSDs.
Collapse
Affiliation(s)
- Ataf Hussain Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK.
| | - Trevor Cole
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
16
|
Lee SH, Lee SH, Lee JH, Park JW, Kim JE. IDH2 deficiency increases bone mass with reduced osteoclastogenesis by limiting RANKL expression in osteoblasts. Bone 2019; 129:115056. [PMID: 31479775 DOI: 10.1016/j.bone.2019.115056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
Abstract
Mitochondria are not only responsible for cellular energy production but are also involved in signaling, cellular differentiation, cell death, and aging. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the decarboxylation of isocitrate to α-ketoglutarate, accompanied by NADPH production. IDH2 plays a central role in mitochondrial function in multiple cell types and various organs, including the heart, kidneys, and brain. However, the function of IDH2 in bone tissue is yet to be elucidated. Here, we report that disruption of IDH2 in mice results in high bone mass due to decreased osteoclast number and resorption activity. Although IDH2 played no cell-intrinsic role in osteoclasts, IDH2-deficient animals showed decreased serum markers of osteoclast activity and bone resorption. Bone marrow stromal cells/osteoblasts from Idh2 knockout mice were defective in promoting osteoclastogenesis due to a reduced expression of a key osteoclastogenic factor, receptor activator of nuclear factor-κB ligand (RANKL), in osteoblasts in vivo and in vitro through the attenuation of ATF4-NFATc1 signaling. Our findings suggest that IDH2 is a novel regulator of osteoblast-to-osteoclast communication and bone metabolism, acting via the ATF4-NFATc1-RANKL signaling axis in osteoblasts, and they provide a rationale for further study of IDH2 as a potential therapeutic target for the prevention of bone loss.
Collapse
Affiliation(s)
- Suk Hee Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
17
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
18
|
Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci 2019; 76:1243-1253. [PMID: 30515522 PMCID: PMC11105749 DOI: 10.1007/s00018-018-2981-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Coupling during bone remodeling refers to the spatial and temporal coordination of bone resorption with bone formation. Studies have assessed the subtle interactions between osteoclasts and osteoblasts to preserve bone balance. Traditionally, coupling research related to osteoclast function has focused on bone resorption activity causing the release of growth factors embedded in the bone matrix. However, considerable evidence from in vitro, animal, and human studies indicates the importance of the osteoclasts themselves in coupling phenomena, and many osteoclast-derived coupling factors have been identified. These include sphingosine-1-phosphate, vesicular-receptor activator of nuclear factor-κB, collagen triple helix repeat containing 1, and cardiotrophin-1. Interestingly, neuronal guidance molecules, such as slit guidance ligand 3, semaphorin (SEMA) 3A, SEMA4D, and netrin-1, originally identified as instructive cues allowing the navigation of growing axons to their targets, have been shown to be involved in the intercellular cross-talk among bone cells. This review discusses osteoclast-osteoblast coupling signals, including recent advances and the potential roles of these signals as therapeutic targets for osteoporosis and as biomarkers predicting human bone health.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
19
|
Deyhle RT, Wong CP, Martin SA, McDougall MQ, Olson DA, Branscum AJ, Menn SA, Iwaniec UT, Hamby DM, Turner RT. Maintenance of Near Normal Bone Mass and Architecture in Lethally Irradiated Female Mice following Adoptive Transfer with as few as 750 Purified Hematopoietic Stem Cells. Radiat Res 2019; 191:413-427. [PMID: 30870097 DOI: 10.1667/rr15164.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Total-body irradiation (TBI) followed by transfer of bone marrow cells from donors is routinely performed in immunology research and can be used to manipulate differentiation and/or function of bone cells. However, exposure to high-dose radiation can result in irreversible osteopenia, and transfer of heterogeneous cell populations can complicate interpretation of results. The goal of this research was to establish an approach for reconstituting bone marrow using small numbers of purified donor-derived hematopoietic stem cells (HSCs) without negatively affecting bone metabolism. Gamma-irradiated (9 Gy) WBB6F1 mice were engrafted with bone marrow cells (5 × 106 cells) or purified HSCs (3,000 cells) obtained from GFP transgenic mice. In vivo analysis and in vitro differentiation assays performed two months later established that both methods were effective in reconstituting the hematopoietic compartment with donor-derived cells. We confirmed these findings by engrafting C57Bl/6 (B6) mice with bone marrow cells or purified HSCs from CD45.1 B6 congenic mice. We next performed adoptive transfer of purified HSCs (750 cells) into WBB6F1 and radiosensitive KitW/W-v mice and evaluated the skeleton two months later. Minimal differences were observed between controls and WBB6F1-engrafted mice that received fractionated doses of 2 × 5 Gy. Kitw/wv mice lost weight and became osteopenic after 2 × 5 Gy irradiations but these abnormalities were negligible after 5 Gy irradiation. Importantly, adoptive transfer of wild-type cells into Kitw/wv mice restored normal Kit expression in bone marrow. Together, these findings provide strong evidence for efficient engraftment with purified HSCs after lethal TBI with minimal collateral damage to bone. This approach will be useful for investigating mechanisms by which hematopoietic lineage cells regulate bone metabolism.
Collapse
Affiliation(s)
- Richard T Deyhle
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331.,f Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, BE-2400 Mol, Belgium
| | - Carmen P Wong
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Stephen A Martin
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Melissa Q McDougall
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Dawn A Olson
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Adam J Branscum
- b Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331
| | - Scott A Menn
- d Radiation Center, Oregon State University, Corvallis, Oregon 97331
| | - Urszula T Iwaniec
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| | - David M Hamby
- c Nuclear Science and Engineering, Oregon State University, Corvallis, Oregon 97331
| | - Russell T Turner
- a Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331.,e Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
20
|
Zhang Y, Chen SE, Shao J, van den Beucken JJJP. Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36652-36663. [PMID: 30270615 PMCID: PMC6213029 DOI: 10.1021/acsami.8b10992] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Implant surface properties are a key factor in bone responses to metallic bone implants. In view of the emerging evidence on the important role of osteoclasts in bone regeneration, we here studied how surface roughness affects osteoclastic differentiation and to what extent these osteoclasts have stimulatory effects on osteogenic differentiation of osteoprogenitor cells. For this, we induced osteoclasts derived from RAW264.7 cell line and primary mouse macrophages on titanium surfaces with different roughness ( Ra 0.02-3.63 μm) and analyzed osteoclast behavior in terms of cell number, morphology, differentiation, and further anabolic effect on osteoblastic cells. Surfaces with different roughness induced the formation of osteoclasts with distinct phenotypes, based on total osteoclast numbers, morphology, size, cytoskeletal organization, nuclearity, and osteoclastic features. Furthermore, these different osteoclast phenotypes displayed differential anabolic effects toward the osteogenic differentiation of osteoblastic cells, for which the clastokine CTHRC1 was identified as a causative factor. Morphologically, osteoclast potency to stimulate osteogenic differentiation of osteoblastic cells was found to logarithmically correlate with the nuclei number per osteoclast. Our results demonstrate the existence of a combinatorial effect of surface roughness, osteoclastogenesis, and osteogenic differentiation. These insights open up a new dimension for designing and producing metallic implants by considering the implant roughness to locally regulate osseointegration through coupling osteoclastogenesis with osteogenesis.
Collapse
Affiliation(s)
- Yang Zhang
- Department
of Biomaterials, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - S. Elisa Chen
- Department
of Biomaterials, Radboudumc, Nijmegen 6525 GA, The Netherlands
- Department
of Veterinary Medical Science, University
of Bologna, Bologna 40126, Italy
| | - Jinlong Shao
- Department
of Biomaterials, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | | |
Collapse
|
21
|
Watt J, Baker AH, Meeks B, Pajevic PD, Morgan EF, Gerstenfeld LC, Schlezinger JJ. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice. J Cell Physiol 2018; 233:7007-7021. [PMID: 29380368 DOI: 10.1002/jcp.26495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR.
Collapse
Affiliation(s)
- James Watt
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Amelia H Baker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Brett Meeks
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Paola D Pajevic
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Elise F Morgan
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
22
|
Abstract
C–C chemokine receptor 5 (CCR5) is a co-receptor of HIV. Epidemiological findings suggest that the functional loss of CCR5 is correlated with a lower incidence of bone-destructive diseases as well as of HIV transmission. However, it is not clear whether CCR5 is involved in regulation of the function of bone cells, in addition to that of immune cells. Here we show that blockade of CCR5 using specific antibodies impairs human osteoclast function in vitro. Ccr5-deficient (Ccr5−/−) mice presented with dysfunctional osteoclasts and were resistant to osteoporosis induced by receptor activator of nuclear factor kappa-B ligand (RANKL), which triggers osteoporosis independently of inflammatory and immunomodulatory pathways. Furthermore, Ccr5 deficiency impairs the cellular locomotion and bone-resorption activity of osteoclasts, which is associated with the disarrangement of podosomes and adhesion complex molecules including Pyk2. Overall, the data provides evidence that CCR5 has an essential role in bone-destructive conditions through the functional regulation of osteoclasts. CCR5 is a co-receptor for HIV, and loss of function is associated with lower incidence of HIV but also with bone-destructive diseases. Here the authors show that ablation of CCR5 impairs osteoclast function and improves resistance to osteoporosis in mouse models.
Collapse
|
23
|
Aukes K, Forsman C, Brady NJ, Astleford K, Blixt N, Sachdev D, Jensen ED, Mansky KC, Schwertfeger KL. Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS One 2017; 12:e0185736. [PMID: 28968431 PMCID: PMC5624603 DOI: 10.1371/journal.pone.0185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been implicated in promoting breast cancer growth and progression. While the autocrine effects of FGFR activation in tumor cells have been extensively studied, little is known about the effects of tumor cell-derived FGFs on cells in the microenvironment. Because FGF signaling has been implicated in the regulation of bone formation and osteoclast differentiation, we hypothesized that tumor cell-derived FGFs are capable of modulating osteoclast function and contributing to growth of metastatic lesions in the bone. Initial studies examining FGFR expression during osteoclast differentiation revealed increased expression of FGFR1 in osteoclasts during differentiation. Therefore, studies were performed to determine whether tumor cell-derived FGFs are capable of promoting osteoclast differentiation and activity. Using both non-transformed and transformed cell lines, we demonstrate that breast cancer cells express a number of FGF ligands that are known to activate FGFR1. Furthermore our results demonstrate that inhibition of FGFR activity using the clinically relevant inhibitor BGJ398 leads to reduced osteoclast differentiation and activity in vitro. Treatment of mice injected with tumor cells into the femurs with BGJ398 leads to reduced osteoclast activity and bone destruction. Together, these studies demonstrate that tumor cell-derived FGFs enhance osteoclast function and contribute to the formation of metastatic lesions in breast cancer.
Collapse
Affiliation(s)
- Kelly Aukes
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cynthia Forsman
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas J. Brady
- Microbiology, Cancer Biology and Immunology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristina Astleford
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas Blixt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deepali Sachdev
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric D. Jensen
- Department of Diagnostic and Biological Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kim C. Mansky
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| | - Kathryn L. Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| |
Collapse
|
24
|
Fujiwara T, Ye S, Castro-Gomes T, Winchell CG, Andrews NW, Voth DE, Varughese KI, Mackintosh SG, Feng Y, Pavlos N, Nakamura T, Manolagas SC, Zhao H. PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight 2016; 1:e86330. [PMID: 27777970 DOI: 10.1172/jci.insight.86330] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7.
Collapse
Affiliation(s)
- Toshifumi Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | | | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yunfeng Feng
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Nathan Pavlos
- Center for Orthopedic Research, Dentistry and Health Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Takashi Nakamura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Stavros C Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Haibo Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Physiology and Biophysics, and
| |
Collapse
|
25
|
Wendelboe MH, Thomsen JS, Henriksen K, Vegger JB, Brüel A. Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice. Bone 2016; 87:27-36. [PMID: 27021151 DOI: 10.1016/j.bone.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Abstract
In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss.
Collapse
Affiliation(s)
- Mette Høegh Wendelboe
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Jesper Skovhus Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Jens Bay Vegger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
26
|
Dufresne SS, Boulanger-Piette A, Bossé S, Frenette J. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction. ACTA ACUST UNITED AC 2016; 3:e13231-e13236. [PMID: 27547781 PMCID: PMC4991940 DOI: 10.14800/rci.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Antoine Boulanger-Piette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Sabrina Bossé
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| |
Collapse
|
27
|
Weivoda MM, Ruan M, Pederson L, Hachfeld C, Davey RA, Zajac JD, Westendorf JJ, Khosla S, Oursler MJ. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation. J Bone Miner Res 2016; 31:76-85. [PMID: 26108893 PMCID: PMC4758668 DOI: 10.1002/jbmr.2586] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/12/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclast-specific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β-induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss.
Collapse
Affiliation(s)
- Megan M Weivoda
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| | - Ming Ruan
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| | - Larry Pederson
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| | - Christine Hachfeld
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - Sundeep Khosla
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| | - Merry Jo Oursler
- Division of Endocrinology, Metabolism, Nutrition, and Diabetes, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Appelman-Dijkstra NM, Papapoulos SE. Modulating Bone Resorption and Bone Formation in Opposite Directions in the Treatment of Postmenopausal Osteoporosis. Drugs 2015; 75:1049-58. [PMID: 26056029 PMCID: PMC4498277 DOI: 10.1007/s40265-015-0417-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone remodeling, the fundamental process for bone renewal, is targeted by treatments of osteoporosis to correct the imbalance between bone resorption and bone formation and reduce the risk of fractures and associated clinical consequences. Currently available therapeutics affect bone resorption and bone formation in the same direction and either decrease (inhibitors of bone resorption) or increase (parathyroid hormone [PTH] peptides) bone remodeling. Studies of patients with rare bone diseases and genetically modified animal models demonstrated that bone resorption and bone formation may not necessarily be coupled, leading to identification of molecular targets in bone cells for the development of novel agents for the treatment of osteoporosis. Application of such agents to the treatment of women with low bone mass confirmed that bone resorption and bone formation can be modulated in different directions and so far two new classes of therapeutics for osteoporosis have been defined with distinct mechanisms of action. Such treatments, if combined with a favorable safety profile, will offer new therapeutic options and will improve the management of patients with osteoporosis.
Collapse
Affiliation(s)
| | - Socrates E. Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
29
|
Henriksen K, Thudium CS, Christiansen C, Karsdal MA. Novel targets for the prevention of osteoporosis - lessons learned from studies of metabolic bone disorders. Expert Opin Ther Targets 2015; 19:1575-84. [PMID: 25960169 DOI: 10.1517/14728222.2015.1045415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Osteoporosis is a major health care problem, and whereas efficacious treatments for vertebral fracture reduction are available for osteoporosis patients, these therapies are still limited with respect to capacity for restoration of bone loss, as well as efficacy on non-vertebral fractures, such as hip fractures, which are the source of morbidity and mortality. AREAS COVERED Studies of rare bone diseases in humans, such as osteopetrosis, sclerosteosis, pycnodysostosis and more, have shed light on a series of drug targets in bone that have the potential to result in therapies for osteoporosis with novel mechanisms of action, and the potential to improve the standard of care substantially. We focus on how they are separated from classic treatments for osteoporosis, in terms of novel modes of action, additional beneficial effects on bone turnover and importantly also safety. We focus on the status of anti-sclerostin antibodies, novel parathyroid hormone-related protein analogs, inhibitors of cathepsin K and ClC-7 in osteoclasts, all of which are currently in development. EXPERT OPINION There is a good possibility that the treatment of osteoporosis will be greatly improved within the coming years; however, with numerous effective and safe drugs already available careful attention to the safety of these novel candidates is crucial.
Collapse
Affiliation(s)
- Kim Henriksen
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Christian Schneider Thudium
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Claus Christiansen
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Morten Asser Karsdal
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| |
Collapse
|