1
|
Caffarelli C, Gonnelli S. The Management of Bone Defects in Rett Syndrome. Calcif Tissue Int 2025; 116:11. [PMID: 39751871 DOI: 10.1007/s00223-024-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS. Low bone mineral density (BMD) is primarily due to a slow rate of bone formation due to dysfunctional osteoblast activity. The use of anticonvulsants, immobilization, low physical activity, poor nutrition, and inadequate vitamin D intake all significantly hamper skeletal maturation and the accumulation of bone mass in RS girls, making them more susceptible to fragility fractures. In RS patients, the upper and lower limbs are the most common sites for fractures which are due to both a reduced BMD and a diminished bone size. This review summarizes the knowledge on risk factors for fragility fracture in patients with RS and proposes a potential diagnostic and therapeutic pathway to enhance low BMD and mitigate the risk of fragility fractures. In particular, this review focused on the importance of clinical and instrumental evaluation of bone status as a basis for adequate planning of nutritional, pharmacological, and surgical interventions to be undertaken. Additionally, the management of bone defects in individuals with RS should be customized to meet each person's specific needs, abilities, and general health.
Collapse
Affiliation(s)
- Carla Caffarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions. Pathol Int 2024. [PMID: 39704061 DOI: 10.1111/pin.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU. Osteoclasts, derived from the monocyte-macrophage lineage, are regulated by the RANKL-RANK-OPG system, which is a key factor in osteoclast differentiation. RANKL activates osteoclasts through its receptor RANK, while OPG acts as a decoy receptor that inhibits RANKL. In trabecular bone, high turnover involves rapid bone formation and resorption, influenced by conditions such as malignancy and inflammatory cytokines that increase RANKL expression. Cortical bone remodeling, regulated by aged osteocytes expressing RANKL, is less understood, despite ongoing research into how Rett syndrome, characterized by MeCP2 abnormalities, affects RANKL expression. Balancing trabecular and cortical bone involves mechanisms that preserve cortical bone, despite overall bone mass reduction due to aging or oxidative stress. Research into genes like sFRP4, which modulates bone mass, highlights the complex regulation by BMUs. The roles of the RANKL-RANK-OPG system extend beyond bone, affecting processes such as aortic valve formation and temperature regulation, which highlight the interconnected nature of biological research.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Japan
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Japan
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Japan
| |
Collapse
|
3
|
Caffarelli C, Al Refaie A, Mondillo C, De Vita M, Baldassini L, Valacchi G, Gonnelli S. Bone Fracture in Rett Syndrome: Mechanisms and Prevention Strategies. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1861. [PMID: 38136063 PMCID: PMC10741854 DOI: 10.3390/children10121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The present study aimed to evaluate the burden and management of fragility fractures in subjects with Rett syndrome. We searched all relevant medical literature from 1 January 1986 to 30 June 2023 for studies under the search term "Rett syndrome and fracture". The fracture frequency ranges from a minimum of 13.9% to a maximum of 36.1%. The majority of such fractures occur in lower limb bones and are associated with low bone mineral density. Anticonvulsant use, joint contractures, immobilization, low physical activity, poor nutrition, the genotype, and lower calcium and vitamin D intakes all significantly impair skeletal maturation and bone mass accrual in Rett syndrome patients, making them more susceptible to fragility fractures. This review summarizes the knowledge on risk factors for fragility fracture in patients with Rett syndrome and suggests a possible diagnostic and therapeutic care pathway for improving low bone mineral density and reducing the risk of fragility fractures. The optimization of physical activity, along with adequate nutrition and the intake of calcium and vitamin D supplements, should be recommended. In addition, subjects with Rett syndrome and a history of fracture should consider using bisphosphonates.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Antonella Al Refaie
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Caterina Mondillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Michela De Vita
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Leonardo Baldassini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Animal Science Department, Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 27695, USA
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| |
Collapse
|
4
|
Najafi M, Najafi M, Mahdavi-Mazdeh M, Maziar S, Keshtkar AA, Sedaghat M, Zare-Bidaki F, Larijani B, Hamidi Z. Quantitative Ultrasound of Phalanx in Primary and Secondary Osteoporosis: Mini-review and Practical Experience. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2022. [DOI: 10.1177/87564793211070247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Dual x-ray absorptiometry (DXA) is gold standard of bone densitometry, but quantitative ultrasound (QUS) of bone is less expensive and portable. This study was designed to assess its usefulness in secondary osteoporosis diagnosis. Materials and Methods: There were 200 secondary osteoporosis cases (rheumatoid arthritis, hemodialysis, kidney transplant patients, and levothyroxine users) and of those, their phalanx QUS results were compared with normal controls. Also, the QUS and DXA results were compared to find any correlation of these methods for diagnosing osteoporosis. Results: There was not significantly different results compared with normal controls, except for those of hemodialysis patients ( P = .00). Also, the comparison of QUS with DXA results showed no significant correlation except in hemodialysis patients, in both spinal and femoral regions ( P = .023 and .21, respectively), as well as the levothyroxine group’s spinal region ( P = .005). Conclusion: These results suggest that QUS of phalanx may be useful in screening secondary osteoporosis but for establishment of diagnosis, DXA measurements are still needed.
Collapse
Affiliation(s)
- Minoo Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Najafi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Mahdavi-Mazdeh
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Maziar
- Department of Nephrology, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sedaghat
- Department of Community Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare-Bidaki
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Hamidi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Caffarelli C, Gonnelli S, Pitinca MDT, Camarri S, Al Refaie A, Hayek J, Nuti R. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with bone disease severity in Rett syndrome. BMC MEDICAL GENETICS 2020; 21:21. [PMID: 32005172 PMCID: PMC6995101 DOI: 10.1186/s12881-020-0960-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023]
Abstract
Background More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. The disorder is caused by mutations in a single gene and the disease severity in affected individuals can be quite variable. Specific MECP2 mutations may lead phenotypic variability and different degrees of disease severity. It is known that low bone mass is a frequent and early complication of subjects with Rett syndrome. As a consequence of the low bone mass Rett girls are at an increased risk of fragility fractures. This study aimed to investigate if specific MECP2 mutations may affects the degree of involvement of the bone status in Rett subjects. Methods In 232 women with Rett syndrome (mean age 13.8 ± 8.3 yrs) we measured bone mineral density at whole body and at femur (BMD-FN and BMD-TH) by using a DXA machine (Hologic QDR 4500). QUS parameters were assessed at phalanxes by Bone Profiler-IGEA (amplitude dependent speed of sound: AD-SoS and bone transmission time: BTT). Moreover, ambulation capacity (independent or assisted), fracture history and presence of scoliosis were assessed. We divided the subjects with the most common point mutations in two group based on genotype-phenotype severity; in particular, there has been consensus in recognising that the mutations R106T, R168X, R255X, R270X are considered more severe. Results As aspect, BMD-WB, BMD-FN and BMD-TH were lower in subjects with Rett syndrome that present the most severe mutations with respect to subjects with Rett syndrome with less severe mutations, but the difference was statistically significant only for BMD-FN and BMD-TH (p < 0.05). Also both AD-SoS and BTT values were lower in subjects that present the most severe mutations with respect to less severe mutations but the difference was not statistically significant. Moreover, subjects with Rett syndrome with more severe mutations present a higher prevalence of scoliosis (p < 0.05) and of inability to walk (p < 0.05). Conclusion This study confirms that MECP2 mutation type is a strong predictor of disease severity in subjects with Rett syndrome. In particular, the subjects with more severe mutation present a greater deterioration of bone status, and a higher prevalence of scoliosis and inability to walk.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Maria Dea Tomai Pitinca
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Silvia Camarri
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Antonella Al Refaie
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Joussef Hayek
- Paediatrics Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| |
Collapse
|
6
|
Bone status in relation to ambulatory performance in girls with Rett syndrome: a 10-year longitudinal study. Pediatr Res 2019; 85:639-643. [PMID: 30188498 DOI: 10.1038/s41390-018-0111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Low bone mass is a frequent and early complication of girls with Rett syndrome. As a consequence of the low bone mass, Rett patients are at an increased risk of fragility fractures. This study aimed to investigate the long-term influences of mobility on bone status in girls with Rett syndrome. METHODS In 58 girls with Rett syndrome, biochemical parameters and quantitative ultrasound parameters at phalanges (amplitude-dependent speed of sound: AD-SoS and bone transmission time: BTT) were measured at baseline and after 5 and 10 years. The subjects were divided into two groups: nonambulatory (n = 28) and ambulatory (n = 30). RESULTS In nonambulatory Rett subjects, the values of AD-SoS and BTT were significantly lower than in ambulatory Rett subjects at each time point. However, during the 10-year follow-up both ambulatory and nonambulatory Rett patients showed a similar worsening in their bone status. CONCLUSION This longitudinal study suggests that both ambulatory and nonambulatory Rett subjects present a progressive deterioration of bone status as assessed by quantitative ultrasound parameters, and the ambulatory impairment and the nutritional status seem to play a key role in the deterioration of bone status.
Collapse
|
7
|
Abstract
Bone health in children with rheumatic conditions may be compromised due to several factors related to the inflammatory disease state, delayed puberty, altered life style, including decreased physical activities, sun avoidance, suboptimal calcium and vitamin D intake, and medical treatments, mainly glucocorticoids and possibly some disease-modifying anti-rheumatic drugs. Low bone density or even fragility fractures could be asymptomatic; therefore, children with diseases of high inflammatory load, such as systemic onset juvenile idiopathic arthritis, juvenile dermatomyositis, systemic lupus erythematosus, and those requiring chronic glucocorticoids may benefit from routine screening of bone health. Most commonly used assessment tools are laboratory testing including serum 25-OH-vitamin D measurement and bone mineral density measurement by a variety of methods, dual-energy X-ray absorptiometry as the most widely used. Early disease control, use of steroid-sparing medications such as disease-modifying anti-rheumatic drugs and biologics, supplemental vitamin D and calcium, and promotion of weight-bearing physical activities can help optimize bone health. Additional treatment options for osteoporosis such as bisphosphonates are still controversial in children with chronic rheumatic diseases, especially those with decreased bone density without fragility fractures. This article reviews common risk factors leading to compromised bone health in children with chronic rheumatic diseases and discusses the general approach to prevention and treatment of bone fragility.
Collapse
|
8
|
Abstract
The increased rate of fractures associated with epilepsy has been long recognised but remains incompletely understood. Study quality and study results have varied, with some but not all studies showing bone diseases including osteoporosis and/or osteomalacia, and a high prevalence of vitamin D insufficiency and deficiency are also noted. Falls risk can also be higher in patients with epilepsy taking anti-epileptic medications, potentially leading to fracture. Larger research collaborations are recommended to further advance understanding in this field, particularly to examine underlying genetic and pharmacogenomic associations of epilepsy and anti-epileptic medication usage and its association with bone diseases and fractures, as well as further investigation into optimal management of bone health in epilepsy.
Collapse
Affiliation(s)
- Sandra J Petty
- Melbourne Brain Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Melbourne Brain Centre at The Royal Melbourne Hospital, The Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
- Academic Centre, Ormond College, Parkville, VIC, Australia.
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Neurology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.
- Department of Neurology, Western Health, Sunshine, VIC, Australia.
- Department of Medical Education, The University of Melbourne, Parkville, VIC, Australia.
| | - Helen Wilding
- St Vincent's Hospital Library Service, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - John D Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Bone and Mineral Medicine, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
9
|
Caffarelli C, Hayek J, Nuti R, Gonnelli S. Teriparatide in the treatment of recurrent fractures in a Rett patient. CLINICAL CASES IN MINERAL AND BONE METABOLISM 2015; 12:253-6. [PMID: 26811706 DOI: 10.11138/ccmbm/2015.12.3.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rett syndrome is a common X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene. Patients with Rett syndrome have a low bone mineral density and increased risk of fracture. The present case report describes a successful novel therapeutic intervention with teriparatide with one patient with Rett syndrome, after suffering from recurrent low-trauma fractures at intervals of several years. Because of the severity of bone involvement, the decision was made to treat with teriparatide and subsequently with intravenous bisphosphonate. Since the initiation of the treatment, there was an evident improvement at densitometric and QUS parameters. Furthermore, until the present, no new fractures have appeared. This is the first report in which teriparatide was administered to a subjects with Rett syndrome. In conclusion, this report has shown the effectiveness of teriparatide in the management of osteoporotic fractures in one subjects with Rett syndrome. This report provides evidence that increased knowledge of bone pathology and fracture prevention in Rett subjects is important and should be addressed in future studies.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jussef Hayek
- Child Neuropsychiatry Unit, University Hospital, "Azienda Ospedaliera Universitaria Senese", Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|