1
|
Amraish N, Pahr DH. High-resolution local trabecular strain within trabecular structure under cyclic loading. J Mech Behav Biomed Mater 2024; 152:106318. [PMID: 38290394 DOI: 10.1016/j.jmbbm.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024]
Abstract
Trabecular bone structure is a complex microstructure consisting of rods and plates, which poses challenges for its mechanical characterization. Digital image correlation (DIC) offers the possibility to characterize the strain response on the surface of trabecular bone. This study employed DIC equipped with a telecentric lens to investigate the strain state of individual trabeculae within their trabecular structure by assessing the longitudinal strain of the trabeculae at both the middle and near the edges of the trabeculae. Due to the high-resolution of the used DIC system, local surface strain of trabeculae was analyzed too. Lastly, the correlation between longitudinal trabecular strain and the orientation and slenderness of the trabeculae was investigated. The results showed that the strain magnification close to the edge of the trabeculae was higher and reached up to 8-folds the strain along the middle of the trabeculae. On the contrary, no strain magnification was found for most of the trabeculae between the longitudinal trabecular strain along the middle of the trabeculae and the globally applied strain. High-resolution full-field strain maps were obtained on the surface of trabeculae showing heterogeneous strain distribution with increasing load. No significant correlation was found between longitudinal trabecular strain and its orientation or slenderness. These findings and the applied methodology can be used to broaden our understanding of the deformation mechanisms of trabeculae within the trabecular network.
Collapse
Affiliation(s)
- Nedaa Amraish
- Division Biomechanics, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Lower Austria, Austria; Institute for Lightweight Design and Structural Biomechanics, Getreidemarkt 9, Vienna, 1060, Vienna, Austria.
| | - Dieter H Pahr
- Division Biomechanics, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Lower Austria, Austria; Institute for Lightweight Design and Structural Biomechanics, Getreidemarkt 9, Vienna, 1060, Vienna, Austria
| |
Collapse
|
2
|
Moussa MS, Bachour D, Komarova SV. Adverse effect of botulinum toxin-A injections on mandibular bone: A systematic review and meta-analysis. J Oral Rehabil 2024; 51:404-415. [PMID: 37668276 DOI: 10.1111/joor.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Botulinum toxin-A (BTX) is a potent neurotoxin that is emerging in the scope of dental practice for its ability to temporarily paralyse musculature and reduce hyperfunction. This may be desirable in diseases/disorders associated with hyperactive muscles such as the muscles of mastication, most implicated in painful temporomandibular disorders (TMDs). The use of BTX extends beyond its indications with off-label use in TMD's and other conditions, while potential adverse effects remain understudied. BTX is well-established hindlimb paralysis model in animals leading to significant bone loss with underlying mechanisms remaining unclear. The objective of this study is to systematically review the literature for articles investigating changes in mandibular bone following BTX injections and meta-analyse available data on reported bone outcomes. METHODS Comprehensive search of Medline, Embase and Web of Science retrieved 934 articles. Following the screening process, 36 articles in animals and humans were included for quantitative synthesis. Articles in human individuals (6) and three different animal species (14) presented mandibular bone outcomes that were included in the meta-analysis. RESULTS The masseter and temporalis muscles were frequently injected across all species. In humans, we observe a decrease of about 6% in cortical thickness of mandibular regions following BTX injection with no evident changes in either volume or density of bone structures. In animals, bone loss in the condylar region is significantly high in both cortical and trabecular compartments. DISCUSSION Our analysis supports the concept of BTX-induced bone-loss model in animal mandibles. Further, bone loss might be confined to the cortical compartments in humans. Most studies did not address the reality of repeated injections and excessive dosing, which occur due to the reversible action of BTX. More rigorous trials are needed to draw a full picture of potential long-term adverse effects on bone.
Collapse
Affiliation(s)
- Mahmoud S Moussa
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Dona Bachour
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Bromer FD, Brent MB, Pedersen M, Thomsen JS, Brüel A, Foldager CB. The Effect of Normobaric Intermittent Hypoxia Therapy on Bone in Normal and Disuse Osteopenic Mice. High Alt Med Biol 2021; 22:225-234. [PMID: 33769867 DOI: 10.1089/ham.2020.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bromer, Frederik Duch, Mikkel Bo Brent, Michael Pedersen, Jesper Skovhus Thomsen, Annemarie Brüel, and Casper Bindzus Foldager. The effect of normobaric intermittent hypoxia therapy on bone in normal and disuse osteopenic mice. High Alt Med Biol. 22: 225-234, 2021. Background: Systemic intermittent hypoxia therapy (IHT) has been shown to elicit beneficial effects on multiple physiological systems. However, only few studies have investigated the effect of long-term normobaric IHT on bone mass and mechanical and microstructural properties. The aim of the present study was to examine the effect of IHT on bone in both healthy and osteopenic mice. Materials and Methods: Thirty mice were stratified into four groups: Ctrl, Ctrl+IHT, Botox, and Botox+IHT. Osteopenia was induced by injecting Botox into the right hindlimb of the mice causing paralysis and disuse. IHT animals were placed in a normobaric hypoxia-chamber (10% oxygen) for 1 hour twice daily 5 days/week. Animals were sacrificed after 21 days, and DEXA, micro-computed tomography, and mechanical testing were performed on the femora. Results: As expected, Botox resulted in a significant reduction of bone mineral content (-23.4%), area bone mineral density (-19.1%), femoral neck strength (Fmax: -54.7%), bone volume fraction (bone volume/tissue volume: -41.8%), and trabecular thickness (-32.4%). IHT had no measurable effect on the bone properties in either healthy or osteopenic mice. Conclusion: The study confirmed that Botox led to loss of bone mass, deterioration of trabecular microstructure, and loss of bone strength. These changes were not influenced by IHT. Notably, IHT had no detrimental effect on bone in either healthy or osteopenic mice. This indicates that IHT of ailments outside of the skeletal system may be administered without causing harm to the bone.
Collapse
Affiliation(s)
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
5
|
Tang MJ, Graham HK, Davidson KE. Botulinum Toxin A and Osteosarcopenia in Experimental Animals: A Scoping Review. Toxins (Basel) 2021; 13:213. [PMID: 33799488 PMCID: PMC8001269 DOI: 10.3390/toxins13030213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/24/2023] Open
Abstract
We conducted a scoping review to investigate the effects of intramuscular injection of Botulinum Toxin A (BoNT-A) on bone morphology. We investigated if the muscle atrophy associated with Injection of BoNT-A had effects on the neighboring bone. We used the search terms: osteopenia, bone atrophy, Botulinum Toxin A, Micro-CT, mice or rat. The following databases were searched: Medline, Embase, PubMed and the Cochrane Library, between 1990 and 2020. After removal of duplicates, 228 abstracts were identified of which 49 studies satisfied our inclusion and exclusion criteria. The majority of studies (41/49) reported a quantitative reduction in at least one measure of bone architecture based on Micro-CT. The reduction in the ratio of bone volume to tissue volume varied from 11% to 81% (mean 43%) according to the experimental set up and study time points. While longer term studies showed muscle recovery, no study showed complete recovery of all bone properties at the termination of the study. In experimental animals, intramuscular injection of BoNT-A resulted in acute muscle atrophy and acute degradation of the neighboring bone segment. These findings may have implications for clinical protocols in the use of Botulinum Toxin in children with cerebral palsy, with restraint recommended in injection protocols and consideration for monitoring bone density. Clinical studies in children with cerebral palsy receiving injections of Botulinum are indicated.
Collapse
Affiliation(s)
- Min Jia Tang
- Department of Orthopaedics, The Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - H. Kerr Graham
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Kelsey E. Davidson
- Department of Orthopedics, Shriners Hospitals for Children, Chicago, IL 60707, USA
| |
Collapse
|
6
|
Brent MB, Lodberg A, Thomsen JS, Brüel A. Rodent model of disuse-induced bone loss by hind limb injection with botulinum toxin A. MethodsX 2020; 7:101079. [PMID: 33083241 PMCID: PMC7551361 DOI: 10.1016/j.mex.2020.101079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022] Open
Abstract
Bone loss materializes rapidly after immobilization or mechanical unloading. Hind limb injection with botulinum toxin A (BTX) is a highly reproducible animal model for disuse-induced bone loss. Here we describe an easy-to-use and enhanced version of the method employing multiple hind limb injections with BTX to induce a pervasive muscle paralysis and thereby disuse of the hind limb. Thirty-six 12-14-week-old female Wistar rats were stratified into three groups: Baseline (Base), Control (Ctrl), and BTX. Disuse was achieved by injecting BTX directly into the right quadriceps femoris muscle, the hamstring muscles, and the posterior calf muscles. The rats were sacrificed after six weeks, and the right rectus femoris muscle and femur were isolated and analyzed. Hind limb disuse resulted in a significant and substantial loss of both muscle mass and bone mass. The loss of bone mass was accompanied by a reduction of trabecular bone mass and a deterioration of the trabecular micro-architecture with a reduction of trabecular thickness and trabecular number compared to Ctrl. In addition, the trabeculae changed from a more plate-like towards a more rod-like shape as indicated by an increase in the structure model index.•Multiple injections with BTX targeting muscles on both the anterior and posterior thigh and the calf ensure a uniform and pervasive muscle paralysis and hind limb disuse.•Hind limb injections with BTX results in a substantial loss of muscle and bone mass and deterioration of the trabecular micro-architecture.•The induction of hind limb disuse with BTX is highly reproducible.
Collapse
|
7
|
Brent MB, Thomsen JS, Brüel A. The Efficacy of PTH and Abaloparatide to Counteract Immobilization-Induced Osteopenia Is in General Similar. Front Endocrinol (Lausanne) 2020; 11:588773. [PMID: 33162940 PMCID: PMC7581786 DOI: 10.3389/fendo.2020.588773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Immobilization results in a substantial bone loss and increased fracture risk. Powerful bone anabolic therapies are necessary to counteract the bone loss and reduce fracture risk during periods with immobilization. Intermittent parathyroid hormone 1-34 (PTH) (teriparatide) and PTH related peptide analog abaloparatide (ABL) are potent bone anabolic therapies acting through the same receptor, but induce different durations of signaling response. We investigated the efficacy of PTH or ABL in preventing immobilization-induced bone loss in rats in a direct mole-to-mole comparison. Immobilization was achieved by injecting botulinum toxin type A (BTX) into the right hindlimb musculature. Sixty 14-week-old female Wistar rats were allocated to the following groups: Baseline, Control, BTX, BTX + PTH (80 μg/kg/day), and BTX + ABL (77 μg/kg/day). Immobilization resulted in a substantial and significant reduction in bone mineral density (aBMD), metaphyseal and epiphyseal trabecular bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), metaphyseal trabecular number (Tb.N), and femoral neck bone strength. Both PTH and ABL prevented the immobilization-induced decrease in aBMD, metaphyseal and epiphyseal Tb.Th, and metaphyseal Tb.N. In addition, PTH rescued the reduction in metaphyseal BV/TV and femoral neck strength, while ABL did not. However, the effect of PTH and ABL did not differ significantly for serum calcium, aBMD, metaphyseal, and epiphyseal BV/TV, Tb.Th, or Tb.N. In conclusion, in a mole-to-mole comparison the efficacy of PTH and ABL is similar in counteracting immobilization-induced reduction in bone mineral density, deterioration in trabecular microarchitecture, and decrease in bone strength.
Collapse
|
8
|
Xu J, She G, Gui T, Hou H, Li J, Chen Y, Zha Z. Knee muscle atrophy is a risk factor for development of knee osteoarthritis in a rat model. J Orthop Translat 2019; 22:67-72. [PMID: 32440501 PMCID: PMC7231952 DOI: 10.1016/j.jot.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives The objective of this study was to investigate the effect of botulinum toxin type A (BTX-A)-induced quadriceps muscle atrophy on the cartilage and subchondral bone in an otherwise intact rat joint model. Methods The rat right quadriceps muscle atrophy was established by intramuscular injection of BTX-A. Twenty-four rats were divided randomly into 3 groups: The BTX-A-treated 4-week group; the BTX-A-treated 8-week group; and the control group injected with phosphate buffer saline were observed for 8 weeks. Muscle atrophy level was measured by weighing and histology examinations. Serum interleukin-1β level was tested by ELISA (enzyme linked immunosorbent assay); the subchondral bone was analysed by micro-computed tomography and the cartilage was measured by histology examinations (gross view, haematoxylin and eosin staining and Safranin-O/fast green staining) and immunohistochemistry test {collagen X [ColX]}. Results BTX-A intramuscular injection led to muscle atrophy. Characteristics of muscle atrophy appeared in two BTX-A-injected groups but not in the control group. Quadriceps atrophy did not affect interleukin-1β level in serum, but resulted in subchondral bone abnormal changes with reduced bone volume/total tissue volume and increased Structure Model Index. Furthermore, the more the severe cartilage damage, the higher the histologic damage scores, followed by the higher the percentage of collagen X-positive chondrocytes caused by muscle atrophy. Conclusions Quadriceps muscle atrophy triggered the subchondral bone abnormal change and cartilage degeneration, which would be a risk factor for development of osteoarthritis. The translational potential of this article Our results indicate that anti-quadriceps muscle atrophy can be a candidate therapeutic target in the prevention of knee osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanfeng Chen
- Corresponding author. Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| | - Zhengang Zha
- Corresponding author. Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, PR China.
| |
Collapse
|
9
|
Vegger JB, Brüel A, Brent MB, Thomsen JS. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice. J Bone Miner Metab 2018; 36:170-179. [PMID: 28365811 DOI: 10.1007/s00774-017-0830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 11/24/2022]
Abstract
Osteopenia and osteoporosis predominately occur in the fully grown skeleton. However, it is unknown whether disuse osteopenia in skeletally mature, but growing, mice resembles that of fully grown mice. Twenty-four 16-week-old (young) and eighteen 44-week-old (aged) female C57BL/6J mice were investigated. Twelve young and nine aged mice were injected with botulinum toxin in one hind limb; the remaining mice served as controls. The mice were euthanized after 3 weeks of disuse. The femora were scanned by micro-computed tomography (µCT) and bone strength was determined by mechanically testing the femoral mid-diaphysis and neck. At the distal femoral metaphysis, the loss of trabecular bone volume fraction (BV/TV) differed between the young and aged mice. However, at the distal femoral epiphysis, no age-dependent differences were observed. Thinning of the trabeculae was not affected by the age of the mice at either the distal femoral metaphysis or the epiphysis. Furthermore, the aged mice lost more bone strength at the femoral mid-diaphysis, but not at the femoral neck, compared to the young mice. In general, the bone loss induced by botulinum toxin did not differ substantially between young and aged mice. Therefore, the loss of bone in young mice resembles that of aged mice, even though they are not fully grown.
Collapse
Affiliation(s)
- Jens Bay Vegger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| | - Jesper Skovhus Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark
| |
Collapse
|
10
|
Park YW, Kim SG, Jo YY. S100 and p65 expression are increased in the masseter muscle after botulinum toxin-A injection. Maxillofac Plast Reconstr Surg 2016; 38:33. [PMID: 27635391 PMCID: PMC5002051 DOI: 10.1186/s40902-016-0079-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to compare the expression levels of p65 and S100 in the rat masseter muscle after the injection of different concentrations of botulinum toxin-A (BTX-A). Methods We injected either 5 or 10 U of BTX-A into both masseter muscle of rats. As a control group, the same volume of saline was injected. After 14 days, the animals were sacrificed. Subsequently, a biopsy and immunohistochemical staining of the samples were performed using a p65 or S100 antibody. Results The cross-sectional area of each myofibril was significantly reduced by BTX-A injection (P < 0.001). The expression of p65 and S100 increased significantly with increasing concentrations of BTX-A (P < 0.001). Conclusions The injection of BTX-A into the masseter muscle induced muscle atrophy. Subsequently, p65 and S100 expression in myoblasts were increased for the protection of muscle cells.
Collapse
Affiliation(s)
- Young-Wook Park
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 South Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung, 210-702 South Korea
| | - You-Young Jo
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, Suwon, South Korea
| |
Collapse
|