1
|
Soldati E, Roseren F, Guenoun D, Mancini L, Catelli E, Prati S, Sciutto G, Vicente J, Iotti S, Bendahan D, Malucelli E, Pithioux M. Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8048. [PMID: 36431532 PMCID: PMC9694313 DOI: 10.3390/ma15228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although multiple structural, mechanical, and molecular factors are definitely involved in osteoporosis, the assessment of subregional bone mineral density remains the most commonly used diagnostic index. In this study, we characterized bone quality in the femoral neck of one osteoporotic patients as compared to an age-matched control subject, and so used a multiscale and multimodal approach including X-ray computed microtomography at different spatial resolutions (pixel size: 51.0, 4.95 and 0.9 µm), microindentation and Fourier transform infrared spectroscopy. Our results showed abnormalities in the osteocytes lacunae volume (358.08 ± 165.00 for the osteoporotic sample vs. 287.10 ± 160.00 for the control), whereas a statistical difference was found neither for shape nor for density. The osteoporotic femoral head and great trochanter reported reduced elastic modulus (Es) and hardness (H) compared to the control reference (−48% (p < 0.0001) and −34% (p < 0.0001), respectively for Es and H in the femoral head and −29% (p < 0.01) and −22% (p < 0.05), respectively for Es and H in the great trochanter), whereas the corresponding values in the femoral neck were in the same range. The spectral analysis could distinguish neither subregional differences in the osteoporotic sample nor between the osteoporotic and healthy samples. Although, infrared spectroscopic measurements were comparable among subregions, and so regardless of the bone osteoporotic status, the trabecular mechanical properties were comparable only in the femoral neck. These results illustrate that bone remodeling in osteoporosis is a non-uniform process with different rates in different bone anatomical regions, hence showing the interest of a clear analysis of the bone microarchitecture in the case of patients’ osteoporotic evaluation.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Flavy Roseren
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Daphne Guenoun
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte Marguerite Hospital, Institute for Locomotion, Department of Radiology, 13274 Marseille, France
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A, SS 14–km 1535 in Area Science Park, Basovizza, 34149 Trieste, Italy
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Emilio Catelli
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Jerome Vicente
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Stefano Iotti
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - David Bendahan
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
| | - Emil Malucelli
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13274 Marseille, France
| |
Collapse
|
2
|
Auger JD, Naik AJ, Murakami AM, Gerstenfeld LC, Morgan EF. Spatial assessment of femoral neck bone density and microstructure in hip osteoarthritis. Bone Rep 2022; 16:101155. [PMID: 34984214 PMCID: PMC8693349 DOI: 10.1016/j.bonr.2021.101155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is known to involve profound changes in bone density and microstructure near to, and even distal to, the joint. Critically, however, a full, spatial picture of these abnormalities has not been well documented in a quantitative fashion in hip OA. Here, micro-computed tomography (44.8 μm/voxel) and data-driven computational anatomy were used to generate 3-D maps of the distribution of bone density and microstructure in human femoral neck samples with early (6F/4M, mean age = 51.3 years), moderate (14F/8M, mean age = 60 years), and severe (16F/6M, mean age = 63.3 years) radiographic OA. With increasing severity of radiographic OA, there was decreased cortical bone mineral density (BMD) (p=0.003), increased cortical thickness (p=0.001), increased cortical porosity (p=0.0028), and increased cortical cross-sectional area (p=0.0012, due to an increase in periosteal radius (p=0.018)), with no differences detected in the total femoral neck or trabecular compartment measures. No OA-related region-specific differences were detected through Statistical Parametric Mapping, but there were trends towards decreased tissue mineral density (TMD) in the inferior femoral neck with increasing OA severity (0.050 < p ≤ 0.091), possibly due to osteophytes. Overall, the lack of differences in cortical TMD among radiographic OA groups indicated that the decrease in cortical BMD with increasing OA severity was largely due to the increased cortical porosity rather than decreased tissue mineralization. As porosity is inversely associated with stiffness and strength in cortical bone, increased porosity may offset the effect that increased cortical cross-sectional area would be expected to have on reducing stresses within the femoral neck. The use of high-resolution imaging and quantitative spatial assessment in this study provide insight into the heterogeneous and multi-faceted changes in density and microstructure in hip OA, which have implications for OA progression and fracture risk.
Collapse
Affiliation(s)
| | | | - Akira M. Murakami
- Boston University School of Medicine, Boston, MA, United States of America
| | | | | |
Collapse
|
3
|
Ding M, Overgaard S. Degenerations in Global Morphometry of Cancellous Bone in Rheumatoid Arthritis, Osteoarthritis and Osteoporosis of Femoral Heads are Similar but More Severe than in Ageing Controls. Calcif Tissue Int 2022; 110:57-64. [PMID: 34244838 DOI: 10.1007/s00223-021-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
We have recently revealed significant differences in microarchitectural properties (i.e. global and local morphometries) and mechanical properties between rheumatoid arthritis (RA), osteoarthritis (OA) and osteoporosis (OP) in cancellous bones. This study compared these properties with those of ageing controls by matching bone volume fraction (BV/TV), the most important determinant for bones' mechanical properties, to investigate whether these bones have similar properties and degenerative potentials. RA, OA and OP femoral heads were harvested from patients undergoing total hip replacement surgery. The selected patients were matched by similar cancellous bone BV/TV, with seven patients in each group. Four samples were prepared from each femoral head and scanned with micro-CT to quantify microarchitectural properties and compression tested to determine mechanical properties. In terms of global morphometry, no significant differences were observed between these diseased bones. In terms of local morphometry, the number of plates in the RA group was significantly greater than that of the OP and control groups. Plate volume density in the RA group was significantly greater than in the control group. Interestingly, the ultimate stresses in the three diseased groups were 77% to 195% lower than in the control group (p < 0.001). Degenerations of global morphometry of cancellous bones in these diseased femoral heads are similar but more severe than in ageing controls matched by BV/TV, as evidenced by pronounced reduction in bone strength. This phenomenon suggests that some local morphometric parameters, along with other factors, such as abnormal collagen, mineralisation, erosion and microdamage, may contribute to further compromising mechanical properties.
Collapse
Affiliation(s)
- Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, Odense University Hospital, J.B. Winsloewsvej 15, 3rd Floor, 5000, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark.
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, Odense University Hospital, J.B. Winsloewsvej 15, 3rd Floor, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
- Department of Orthopaedic Surgery & Traumatology, Copenhagen University Hospital, Bispebjerg, 2400, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2400, Copenhagen, Denmark
| |
Collapse
|
5
|
Ding M, Overgaard S. 3-D microarchitectural properties and rod- and plate-like trabecular morphometric properties of femur head cancellous bones in patients with rheumatoid arthritis, osteoarthritis, and osteoporosis. J Orthop Translat 2021; 28:159-168. [PMID: 33996461 PMCID: PMC8089789 DOI: 10.1016/j.jot.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives We quantify 3-D microarchitectural properties of femoral head cancellous bones from patients with rheumatoid arthritis (RA, n = 12), osteoarthritis (OA, n = 15), osteoporosis (OP, n = 24), or donor controls (CNT, n = 8); and investigate their rod- and plate-like trabecular morphometric properties of trabecular bone tissues and compare these properties between them. Methods Femoral heads were harvested during total hip replacement surgeries or collected from donors. Four cubic cancellous bone samples produced from each femoral head were micro-CT scanned to quantify their microarchitectural and rod- and plate-like trabecular properties. The samples were then tested in compression to determine mechanical properties. Results The microarchitectural properties of femoral head cancellous bone revealed significant differences among the 4 groups, but not between RA and OA. Bone volume fraction was significantly greater in the RA and the OA than in the OP and the CNT. Structure model index was significantly lower in the RA and the OA than in the OP. Number of rods in the RA was significantly greater than in the other 3 groups. Number of plates and plate volume density in the RA and the OA were significantly greater than in the OP and the CNT. Mechanical properties were significantly greater in the RA and the OA than in the OP. The single best determinant for mechanical properties was bone volume fraction. Conclusions This study demonstrates significant differences in 3-D microarchitectural properties and rod- and plate-like trabecular morphometric properties among patients with RA, OA, or OP. The RA and OA cancellous bones displayed similar patterns of microarchitectural degeneration and pronounced different microarchitectures from the OP. The OP group revealed the weakest cancellous bone strength, while the RA and OA groups exhibited a compensatory effect that maintains bone tissues, and hence mechanical properties. The translational potential of this article The study enhances the understanding of microarchitectural degeneration of diseased cancellous bone. The OP group had the weakest cancellous bone strength, while the RA and OA groups exhibited a compensatory effect that maintains bone tissues, and hence mechanical properties. These results are particularly important for design and survival of joint prosthesis.
Collapse
Affiliation(s)
- Ming Ding
- Orthopedic Research Laboratory, Department of Orthopedic Surgery & Traumatology, Odense University Hospital, And Department of Clinical Research, University of Southern Denmark, 5000, Odense, C, Denmark
| | - Søren Overgaard
- Orthopedic Research Laboratory, Department of Orthopedic Surgery & Traumatology, Odense University Hospital, And Department of Clinical Research, University of Southern Denmark, 5000, Odense, C, Denmark.,Department of Orthopaedic Surgery & Traumatology, Copenhagen University Hospital, Bispebjerg, And Department of Clinical Medicine, University of Copenhagen, 2400, Copenhagen, NV, Denmark
| |
Collapse
|
6
|
Pseudoerosions of Hands and Feet in Rheumatoid Arthritis: Anatomic Concepts and Redefinition. J Clin Med 2019; 8:jcm8122174. [PMID: 31835340 PMCID: PMC6947149 DOI: 10.3390/jcm8122174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 01/05/2023] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease characterized by the development of osseous and cartilaginous damage. The correct differentiation between a true erosion and other entities—then often called “pseudoerosions”—is essential to avoid misdiagnosing rheumatoid arthritis and to correctly interpret the progress of the disease. The aims of this systematic review were as follows: to create a definition and delineation of the term “pseudoerosion”, to point out morphological pitfalls in the interpretation of images, and to report on difficulties arising from choosing different imaging modalities. A systematic review on bone erosions in rheumatoid arthritis was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following search terms were applied in PubMed and Scopus: “rheumatoid arthritis”, “bone erosion”, “ultrasonography”, “radiography”, “computed tomography” and “magnetic resonance imaging”. Appropriate exclusion criteria were defined. The systematic review registration number is 138826. The search resulted ultimately in a final number of 25 papers. All indications for morphological pitfalls and difficulties utilizing imaging modalities were recorded and summarized. A pseudoerosion is more than just a negative definition of an erosion; it can be anatomic (e.g., a normal osseous concavity) or artefact-related (i.e., an artificial interruption of the calcified zones). It can be classified according to their configuration, shape, content, and can be described specifically with an anatomical term. “Calcified zone” is a term to describe the deep components of the subchondral, subligamentous and subtendinous bone, and may be applied for all non-cancellous borders of a bone, thus representing a third type of the bone matrix beside the cortical and the trabecular bone.
Collapse
|