1
|
Lee KT, Pranoto IKA, Kim SY, Choi HJ, To NB, Chae H, Lee JY, Kim JE, Kwon YV, Nam JW. Comparative interactome analysis of α-arrestin families in human and Drosophila. eLife 2024; 12:RP88328. [PMID: 38270169 PMCID: PMC10945707 DOI: 10.7554/elife.88328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike β-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.
Collapse
Affiliation(s)
- Kyung-Tae Lee
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
| | - Inez KA Pranoto
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hee-Joo Choi
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Biomedical Research Institute, Hanyang UniversitySeoulRepublic of Korea
| | - Ngoc Bao To
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hansong Chae
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Jeong-Yeon Lee
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
- Department of Pathology, College of Medicine, Hanyang UniversitySeoulRepublic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Young V Kwon
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang UniversitySeoulRepublic of Korea
- Bio-BigData Center, Hanyang Institute for Bioscience and Biotechnology, Hanyang UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Kim SY, Park GI, Park SY, Lee EH, Choi H, Koh JT, Han S, Choi MH, Park EK, Kim IS, Kim JE. Gulp1 deficiency augments bone mass in male mice by affecting osteoclasts due to elevated 17β-estradiol levels. J Cell Physiol 2023; 238:1006-1019. [PMID: 36870066 DOI: 10.1002/jcp.30987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17β-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.
Collapse
Affiliation(s)
- Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Gun-Il Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuck Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Soyun Han
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology, Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Lu L, Cai Y, Luo X, Wang Z, Fung SH, Jia H, Yu CL, Chan WY, Miu KK, Xiao W. A Core Omnigenic Non-coding Trait Governing Dex-Induced Osteoporotic Effects Identified Without DEXA. Front Pharmacol 2021; 12:750959. [PMID: 34899306 PMCID: PMC8651565 DOI: 10.3389/fphar.2021.750959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Iatrogenic glucocorticoid (GC)-induced osteoporosis (GIO) is an idiosyncratic form of secondary osteoporosis. Genetic predisposition among individuals may give rise to variant degree of phenotypic changes but there has yet been a documented unified pathway to explain the idiosyncrasy. In this study, we argue that the susceptibility to epigenetic changes governing molecular cross talks along the BMP and PI3K/Akt pathway may underline how genetic background dictate GC-induced bone loss. Concordantly, osteoblasts from BALB/c or C57BL/6 neonatal mice were treated with dexamethasone for transcriptome profiling. Furthermore, we also confirmed that GC-pre-conditioned mesenchymal stem cells (MSCs) would give rise to defective osteogenesis by instigating epigenetic changes which affected the accessibility of enhancer marks. In line with these epigenetic changes, we propose that GC modulates a key regulatory network involving the scavenger receptor Cd36 in osteoblasts pre-conditioning pharmacological idiosyncrasy in GIO.
Collapse
Affiliation(s)
- Li Lu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanzhen Cai
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoling Luo
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Sin Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Huanhuan Jia
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Chi Lam Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Kai Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Wende Xiao
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021; 27:102-116. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.
Collapse
Affiliation(s)
- Marie Cadé
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Javier Muñoz-Garcia
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Antoine Babuty
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; Department of Haemostasis, CHU de Nantes, France
| | | | - Marie-Francoise Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dominique Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; University of Sheffield, Department of Oncology and Metabolism, Sheffield, UK.
| |
Collapse
|
5
|
Coutinho de Almeida R, Mahfouz A, Mei H, Houtman E, den Hollander W, Soul J, Suchiman E, Lakenberg N, Meessen J, Huetink K, Nelissen RGHH, Ramos YFM, Reinders M, Meulenbelt I. Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration. Rheumatology (Oxford) 2021; 60:1166-1175. [PMID: 32885253 PMCID: PMC7937023 DOI: 10.1093/rheumatology/keaa391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/04/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.
Collapse
Affiliation(s)
- Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter den Hollander
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jamie Soul
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Eka Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jennifer Meessen
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kasper Huetink
- Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Reinders
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Lee SH, Ihn HJ, Park EK, Kim JE. S100 Calcium-Binding Protein P Secreted from Megakaryocytes Promotes Osteoclast Maturation. Int J Mol Sci 2021; 22:ijms22116129. [PMID: 34200172 PMCID: PMC8201154 DOI: 10.3390/ijms22116129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Megakaryocytes (MKs) differentiate from hematopoietic stem cells and produce platelets at the final stage of differentiation. MKs directly interact with bone cells during bone remodeling. However, whether MKs are involved in regulating bone metabolism through indirect regulatory effects on bone cells is unclear. Here, we observed increased osteoclast differentiation of bone marrow-derived macrophages (BMMs) cultured in MK-cultured conditioned medium (MK CM), suggesting that this medium contains factors secreted from MKs that affect osteoclastogenesis. To identify the MK-secreted factor, DNA microarray analysis of the human leukemia cell line K562 and MKs was performed, and S100 calcium-binding protein P (S100P) was selected as a candidate gene affecting osteoclast differentiation. S100P was more highly expressed in MKs than in K562 cells, and showed higher levels in MK CM than in K562-cultured conditioned medium. In BMMs cultured in the presence of recombinant human S100P protein, osteoclast differentiation was promoted and marker gene expression was increased. The resorption area was significantly larger in S100P protein-treated osteoclasts, demonstrating enhanced resorption activity. Overall, S100P secreted from MKs promotes osteoclast differentiation and resorption activity, suggesting that MKs indirectly regulate osteoclast differentiation and activity through the paracrine action of S100P.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41944, Korea;
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
7
|
YTHDF2 mediates LPS-induced osteoclastogenesis and inflammatory response via the NF-κB and MAPK signaling pathways. Cell Signal 2021; 85:110060. [PMID: 34089814 DOI: 10.1016/j.cellsig.2021.110060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Aberrant elevation of osteoclast differentiation and function is responsible for disrupting bone homeostasis in various inflammatory bone diseases. YTH domain family 2 (YTHDF2) is a well-known m6A-binding protein that plays an essential role in regulating cell differentiation and inflammatory processes by mediating mRNA degradation. However, the regulatory role of YTHDF2 in inflammatory osteoclast differentiation remains unelucidated. Here, we detected the expression of m6A-related genes and found that YTHDF2 was upregulated in RANKL-primed osteoclast precursors stimulated with lipopolysaccharide (LPS). Ythdf2 knockdown in RAW264.7 cells and primary bone marrow-derived macrophages (BMMs) enhanced osteoclast formation and bone resorption, which was assessed by TRAP staining assay and pit formation assay. Ythdf2 depletion upregulated osteoclast-related gene expression and proinflammatory cytokine secretion. In contrast, overexpression of Ythdf2 produced the reverse effect. Furthermore, Ythdf2 knockdown enhanced the phosphorylation of IKKα/β, IκBα, ERK, P38 and JNK. NF-κB and MAPK signaling pathway inhibitors effectively abrogated the enhanced expression of Nfact1, c-Fos, IL-1β and TNF-α caused by Ythdf2 knockdown. Mechanistically, the mRNA stability assay revealed that Ythdf2 depletion led to stabilization of Tnfrsf11a, Traf6, Map4k4, Map2k3, Map2k4 and Nfatc1 mRNA. In summary, our findings demonstrated that YTHDF2 has a negative regulatory role in LPS-induced osteoclast differentiation and the inflammatory response via the NF-κB and MAPK signaling pathways.
Collapse
|
8
|
Kim SY, Lee EH, Kim EN, Son WC, Kim YH, Park SY, Kim IS, Kim JE. Identifying Stabilin-1 and Stabilin-2 Double Knockouts in Reproduction and Placentation: A Descriptive Study. Int J Mol Sci 2020; 21:ijms21197235. [PMID: 33008099 PMCID: PMC7583024 DOI: 10.3390/ijms21197235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The placenta undergoes reconstruction at different times during fetal development to supply oxygen and nutrients required throughout pregnancy. To accommodate the rapid growth of the fetus, small spiral arteries undergo remodeling in the placenta. This remodeling includes apoptosis of endothelial cells that line spiral arteries, which are replaced by trophoblasts of fetal origin. Removal of dead cells is critical during this process. Stabilin-1 (Stab1) and stabilin-2 (Stab2) are important receptors expressed on scavenger cells that absorb and degrade apoptotic cells, and Stab1 is expressed in specific cells of the placenta. However, the role of Stab1 and Stab2 in placental development and maintenance remain unclear. In this study, we assessed Stab1 and Stab2 expression in the placenta and examined the reproductive capacity and placental development using a double-knockout mouse strain lacking both Stab1 and Stab2 (Stab1/2 dKO mice). Most pregnant Stab1/2 dKO female mice did not produce offspring and exhibited placental defects, including decidual hemorrhage and necrosis. Findings of this study offer the first description of the phenotypic characteristics of placentas and embryos of Stab1/2 dKO females during pregnancy, suggesting that Stab1 and Stab2 are involved in placental development and maintenance.
Collapse
Affiliation(s)
- Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-Y.K.); (E.-H.L.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
| | - Eun-Hye Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-Y.K.); (E.-H.L.)
| | - Eun Na Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.N.K.); (W.-C.S.)
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.N.K.); (W.-C.S.)
| | - Yeo Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Division of Pediatric Cardiology, Kyungpook National University Children’s Hospital, Daegu 41404, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-Y.K.); (E.-H.L.)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
9
|
Williams AE, Watt J, Robertson LW, Gadupudi G, Osborn ML, Soares MJ, Iqbal K, Pedersen KB, Shankar K, Littleton S, Maimone C, Eti NA, Suva LJ, Ronis MJJ. Skeletal Toxicity of Coplanar Polychlorinated Biphenyl Congener 126 in the Rat Is Aryl Hydrocarbon Receptor Dependent. Toxicol Sci 2020; 175:113-125. [PMID: 32119087 PMCID: PMC7197949 DOI: 10.1093/toxsci/kfaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence links polychlorinated biphenyls (PCBs) to skeletal toxicity, however mechanisms whereby PCBs affect bone are poorly studied. In this study, coplanar PCB 126 (5 μmol/kg) or corn oil vehicle was administered to N = 5 and 6 male and female, wild type (WT) or AhR -/- rats via intraperitoneal injection. Animals were sacrificed after 4 weeks. Bone length was measured; bone morphology was assessed by microcomputed tomography and dynamic histomorphometry. Reduced bone length was the only genotype-specific effect and only observed in males (p < .05). WT rats exposed to PCB 126 had reduced serum calcium, and smaller bones with reduced tibial length, cortical area, and medullary area relative to vehicle controls (p < .05). Reduced bone formation rate observed in dynamic histomorphometry was consistent with inhibition of endosteal and periosteal bone growth. The effects of PCB 126 were abolished in AhR -/- rats. Gene expression in bone marrow and shaft were assessed by RNA sequencing. Approximately 75% of the PCB-regulated genes appeared AhR dependent with 89 genes significantly (p < .05) regulated by both PCB 126 and knockout of the AhR gene. Novel targets significantly induced by PCB 126 included Indian hedgehog (Ihh) and connective tissue growth factor (Ctgf/Ccn2), which regulate chondrocyte proliferation and differentiation in the bone growth plate and cell-matrix interactions. These data suggest the toxic effects of PCB 126 on bone are mediated by AhR, which has direct effects on the growth plate and indirect actions related to endocrine disruption. These studies clarify important mechanisms underlying skeletal toxicity of dioxin-like PCBs and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Ashlee E Williams
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - James Watt
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Larry W Robertson
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Gopi Gadupudi
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Michele L Osborn
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Michael J Soares
- Department of Pathology, University of Kansas Medical Center, Kansas City, Missouri
| | - Khursheed Iqbal
- Department of Pathology, University of Kansas Medical Center, Kansas City, Missouri
| | - Kim B Pedersen
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Shana Littleton
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Cole Maimone
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| | - Nazmin A Eti
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Larry J Suva
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Martin J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|