1
|
Ho WC, Chang CC, Wu WT, Lee RP, Yao TK, Peng CH, Yeh KT. Effect of Osteoporosis Treatments on Osteoarthritis Progression in Postmenopausal Women: A Review of the Literature. Curr Rheumatol Rep 2024; 26:188-195. [PMID: 38372871 PMCID: PMC11063098 DOI: 10.1007/s11926-024-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW The purpose of this literature review was to determine if medications used to treat osteoporosis are also effective for treating osteoarthritis (OA). RECENT FINDINGS A total of 40 relevant articles were identified. Studies were categorized into those (1) discussing estrogen and selective estrogen receptor modulators (SERMs), (2) bisphosphonates, (3) parathyroid hormone (PTH) analogs, and (4) denosumab, and (5) prior review articles. A large amount of evidence suggests that estrogen and SERMs are effective at reducing OA symptoms and disease progression. Evidence suggests that bisphosphonates, the most common medications used to treat osteoporosis, can reduce OA symptoms and disease progression. In vivo studies suggest that PTH analogs may improve the cartilage destruction associated with OA; however, few human trials have examined its use for OA. Denosumab is approved to treat osteoporosis, bone metastases, and certain types of breast cancer, but little study has been done with respect to its effect on OA. The current evidence indicates that medications used to treat osteoporosis are also effective for treating OA. Estrogen, SERMs, and bisphosphonates have the most potential as OA therapies. Less is known regarding the effectiveness of PTH analogs and denosumab in OA, and more research is needed.
Collapse
Affiliation(s)
- Wang-Chun Ho
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wen-Tien Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ting-Kuo Yao
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Zhu R, Wang Y, Ouyang Z, Hao W, Zhou F, Lin Y, Cheng Y, Zhou R, Hu W. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol 2023; 215:115707. [PMID: 37506921 DOI: 10.1016/j.bcp.2023.115707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
In vivo articular cartilage degeneration is an essential hallmark of osteoarthritis (OA), involving chondrocyte senescence, extracellular matrix degradation, chondrocyte death, cartilage loss, and bone erosion. Among them, chondrocyte death is one of the major factors leading to cartilage degeneration. Many studies have reported that various cell death modes, including apoptosis, ferroptosis, and autophagy, play a key role in OA chondrocyte death. Currently, there is insufficient understanding of OA pathogenesis, and there remains a lack of treatment methods to prevent OA and inhibit its progression. Studies suggest that OA prevention and treatment are mainly directed to arrest premature or excessive chondrocyte death. In this review, we a) discuss the forms of death of chondrocytes and the associations between them, b) summarize the critical factors in chondrocyte death, c) discuss the vital role of chondrocyte death in OA, d) and, explore new approaches for targeting the regulation of chondrocyte death in OA treatment.
Collapse
Affiliation(s)
- Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fuli Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
3
|
Li G, Liu S, Xu H, Chen Y, Deng J, Xiong A, Wang D, Weng J, Yu F, Gao L, Ding C, Zeng H. Potential effects of teriparatide (PTH (1-34)) on osteoarthritis: a systematic review. Arthritis Res Ther 2023; 25:3. [PMID: 36609338 PMCID: PMC9817404 DOI: 10.1186/s13075-022-02981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a common and prevalent degenerative joint disease characterized by degradation of the articular cartilage. However, none of disease-modifying OA drugs is approved currently. Teriparatide (PTH (1-34)) might stimulate chondrocyte proliferation and cartilage regeneration via some uncertain mechanisms. Relevant therapies of PTH (1-34) on OA with such effects have recently gained increasing interest, but have not become widespread practice. Thus, we launch this systematic review (SR) to update the latest evidence accordingly. A comprehensive literature search was conducted in PubMed, Web of Science, MEDLINE, the Cochrane Library, and Embase from their inception to February 2022. Studies investigating the effects of the PTH (1-34) on OA were obtained. The quality assessment and descriptive summary were made of all included studies. Overall, 307 records were identified, and 33 studies were included. In vivo studies (n = 22) concluded that PTH (1-34) slowed progression of OA by alleviating cartilage degeneration and aberrant remodeling of subchondral bone (SCB). Moreover, PTH (1-34) exhibited repair of cartilage and SCB, analgesic, and anti-inflammatory effects. In vitro studies (n = 11) concluded that PTH (1-34) was important for chondrocytes via increasing the proliferation and matrix synthesis but preventing apoptosis or hypertrophy. All included studies were assessed with low or unclear risk of bias in methodological quality. The SR demonstrated that PTH (1-34) could alleviate the progression of OA. Moreover, PTH (1-34) had beneficial effects on osteoporotic OA (OPOA) models, which might be a therapeutic option for OA and OPOA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Su Liu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Huihui Xu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Yixiao Chen
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jiapeng Deng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Ao Xiong
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Deli Wang
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Jian Weng
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Fei Yu
- grid.440601.70000 0004 1798 0578Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China ,grid.440601.70000 0004 1798 0578National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036 People’s Republic of China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany. .,Sino Euro Orthopaedics Network (SEON), Berlin, Germany.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China. .,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|
4
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:biom12070959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Correspondence: ; Tel.: +86-13607008562; Fax: +86-86415785
| |
Collapse
|