1
|
Soltani N, Habibollahi S, Salamat A. Application of oxidized multi-walled carbon nanotubes and zeolite nanoparticles for simultaneous preconcentration of codeine and tramadol in saliva prior to HPLC determination. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123693. [PMID: 37028171 DOI: 10.1016/j.jchromb.2023.123693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
In this work, a dispersive micro-solid phase extraction technique along with high-performance liquid chromatography-UV detection was developed for simultaneous preconcentraion and determination of trace levels of codeine and tramadol in human saliva. This method is based on the adsorption of codeine and tramadol on a mixture of oxidized multi-walled carbon nanotubes and zeolite Y nanoparticles with 1:1 ratio as an efficient nanosorbent. Various analytical parameters influencing the adsorption step including the amount of adsorbent, the pH of the sample solution, the temperature, the stirring rate, the contact time of the sample solution, and the adsorption capacity were investigated. Based on the results, 10 mg adsorbent, sample solutions with pH = 7.6, temperature of 25 °C, stirring rate 750 rpm and contact time 15 min, in the adsorption step shows the best results for both drugs. Then the effective parameters on the analyte desorption stage such as the type of desorption solution, pH of the desorption solution, desorption time and desorption volume were investigated. Studies have shown that water/methanol (50:50 v/v) as desorption solution, pH = 2.0, desorption time of 5 min and desorption volume of 2 ml gives the best results.Chromatographic separation was performed on a RP-Shim-pack CLC-ODS-C18 column (250 mm × 4.6 mm, 5 µm) with isocratic mode. The mobile phase contained of acetonitrile:phosphate buffer (18:82, v/v) at pH = 4.5 and the flow rate was 1 ml.min-1. The wavelength of UV detector was adjusted at 210 nm and 198 nm for codeine and tramadol, respectively.Under optimum conditions, the extraction efficiencies of 98.5% and 99.2% were achieved for codeine and tramadol respectively. Enrichment factor of 13, detection limit of 0.3 μg L-1, relative standard deviation of 4.07 for codeine; and an enrichment factor of 15, a detection limit of 0.15 μg L-1, and standard deviation of 2.06 for tramadol were calculated. The linear range of the procedure for each drug was 1.0 to 1000 μg L-1. This method was successfully applied for the analysis of codeine and tramadol in saliva samples.
Collapse
|
2
|
Xu M, Zheng L, Zeng J, Xu W, Jiang X, Wang L. Physiologically based pharmacokinetic modeling of tramadol to inform dose adjustment and drug-drug interactions according to CYP2D6 phenotypes. Pharmacotherapy 2021; 41:277-290. [PMID: 33316842 DOI: 10.1002/phar.2494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The objective of this study was to establish physiologically based pharmacokinetic (PBPK) models of tramadol and its active metabolite O-desmethyltramadol (M1) and to explore the influence of CYP2D6 gene polymorphism on the pharmacokinetics of tramadol and M1. Furthermore, we used PBPK modeling to prospectively predict the extent of drug-drug interactions (DDIs) in the presence of genetic polymorphisms when tramadol was co-administered with the CYP2D6 inhibitors duloxetine and paroxetine. METHODS Plasma concentrations of tramadol and M1 were used to adjust the turnover frequency (Kcat ) of CYP2D6 for phenotype populations with different CYP2D6 genotypes. PBPK models were developed to capture the pharmacokinetics between CYP2D6 extensive metabolizers (EMs), intermediate metabolizers (IMs), poor metabolizers (PMs), and ultra-rapid metabolizers (UMs). The validated models were then used to support dose adjustment in different CYP2D6 phenotypes and to predict the extent of CYP2D6-mediated DDIs when tramadol was co-administered with paroxetine or duloxetine. RESULTS The PBPK models we built accurately describe tramadol and M1 exposure in the population with different CYP2D6 phenotypes. In our prediction, the area under the concentration-time curve (AUCinf-tDlast ) of M1 is 70% lower in PMs than in EMs, 27% lower in IMs, and 15% higher in UMs. Based on the models we built, we suggest that the oral dose of tramadol should be 50% higher for IMs and 25% lower for UMs to achieve an approximately equivalent plasma exposure of M1 as in EMs. When tramadol was co-administered with paroxetine or duloxetine, the magnitude of the inhibitor-substrate interaction was lowest in EMs (0.45), secondary in IMs (0.39), and highest in PMs (0.18) in terms of M1. CONCLUSION The current example uses the PBPK model to guide dose adjustment of tramadol and to predict the effect of CYP2D6 genetic polymorphisms on DDIs for rational clinical use of tramadol in the future.
Collapse
Affiliation(s)
- Miao Xu
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jin Zeng
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenwen Xu
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ferreira da Cruz FS, Natalini CC, Pellin de Molnar BF, Beatriz da Silva Serpa P, Tisotti T, Midon M, Desessards de La Côrte F. Tramadol Effects on Lameness Score After Inhibition of P-GP by Ivermectin Administration in Horses: Preliminary Results. J Equine Vet Sci 2020; 92:103163. [PMID: 32797786 DOI: 10.1016/j.jevs.2020.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the effects and lameness degree in horses administered tramadol after the P-glycoprotein (P-gp) enteric inhibitor ivermectin. Six horses were randomly distributed into three groups, which received two different doses of tramadol by a nasogastric tube: 1 mg/kg (tramadol group 1(GT1)), 4 mg/kg (tramadol group 4 (GT4)), and tramadol 1 mg/kg combined with ivermectin 0.2 mg/kg PO (ivermectin tramadol group (GT1 + Ive)), with one-week washout interval. Heart rate (HR), respiratory rate (RR), intestinal motility, body temperature, and the degree of lameness were evaluated for 360 minutes. The blood gas parameters were evaluated at 0, 60 minutes, and 120 minutes. There were no differences in HR and the degree of lameness. Hypomotility occurred in GT1 and GT4 only at the end of the evaluation period, and RR increased in all groups. We conclude that inhibition of enteric P-gp by ivermectin did not alter the effects of tramadol, suggesting that tramadol is not a substrate for P-gp. However, future studies should be conducted to assess the interaction between P-gp inhibitors on the pharmacokinetics of tramadol.
Collapse
Affiliation(s)
| | - Claudio Correa Natalini
- Postgraduate Program in Animal Medicine: Equine, College of Veterinary Medicine Federal University of Rio Grande do Sul - UFRGS. Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Favieiro Pellin de Molnar
- Postgraduate Program in Animal Medicine: Equine, College of Veterinary Medicine Federal University of Rio Grande do Sul - UFRGS. Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Beatriz da Silva Serpa
- Postgraduate Program in Animal Medicine: Equine, College of Veterinary Medicine Federal University of Rio Grande do Sul - UFRGS. Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tainor Tisotti
- College of Veterinary Medicine, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Monica Midon
- College of Veterinary Medicine, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
4
|
Saiz-Rodríguez M, Ochoa D, Román M, Zubiaur P, Koller D, Mejía G, Abad-Santos F. Involvement of CYP2D6 and CYP2B6 on tramadol pharmacokinetics. Pharmacogenomics 2020; 21:663-675. [PMID: 32538291 DOI: 10.2217/pgs-2020-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study included 24 healthy volunteers who received a single 37.5 mg oral dose of tramadol. We analyzed 18 polymorphisms within CYP2D6, CYP2B6, CYP3A, COMT, ABCB1, SLC22A1 and OPRM1 genes by quantitative PCR, to study whether these polymorphisms affect its pharmacokinetics, pharmacodynamics and safety. CYP2D6 intermediate metabolizers (n = 6) showed higher tramadol plasma concentrations and lower clearance compared with normal and ultrarapid metabolizers. CYP2B6 G516T T/T (n = 2) genotype was also associated to higher tramadol plasma levels. No other polymorphism affected tramadol pharmacokinetics. Three volunteers experienced a prolonged QTc not associated with the genetic variants studied or altered phamacokinetic parameters. The correlation of CYP2B6 genotype with higher tramadol concentrations is remarkable since its influence on its elimination is also relevant and has been less studied to date. However, given our small sample size, it is important to interpret our results with caution.
Collapse
Affiliation(s)
- Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Pharmacology Department, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
5
|
Evaluation of the Effect of CYP2D6 Genotypes on Tramadol and O-Desmethyltramadol Pharmacokinetic Profiles in a Korean Population Using Physiologically-Based Pharmacokinetic Modeling. Pharmaceutics 2019; 11:pharmaceutics11110618. [PMID: 31744222 PMCID: PMC6920759 DOI: 10.3390/pharmaceutics11110618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Tramadol is a μ-opioid receptor agonist and a monoamine reuptake inhibitor. O-desmethyltramadol (M1), the major active metabolite of tramadol, is produced by CYP2D6. A physiologically-based pharmacokinetic model was developed to predict changes in time-concentration profiles for tramadol and M1 according to dosage and CYP2D6 genotypes in the Korean population. Parallel artificial membrane permeation assay was performed to determine tramadol permeability, and the metabolic clearance of M1 was determined using human liver microsomes. Clinical study data were used to develop the model. Other physicochemical and pharmacokinetic parameters were obtained from the literature. Simulations for plasma concentrations of tramadol and M1 (after 100 mg tramadol was administered five times at 12-h intervals) were based on a total of 1000 virtual healthy Koreans using SimCYP® simulator. Geometric mean ratios (90% confidence intervals) (predicted/observed) for maximum plasma concentration at steady-state (Cmax,ss) and area under the curve at steady-state (AUClast,ss) were 0.79 (0.69-0.91) and 1.04 (0.85-1.28) for tramadol, and 0.63 (0.51-0.79) and 0.67 (0.54-0.84) for M1, respectively. The predicted time-concentration profiles of tramadol fitted well to observed profiles and those of M1 showed under-prediction. The developed model could be applied to predict concentration-dependent toxicities according to CYP2D6 genotypes and also, CYP2D6-related drug interactions.
Collapse
|
6
|
Chaves C, Remiao F, Cisternino S, Decleves X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr Neuropharmacol 2018; 15:1156-1173. [PMID: 28474563 PMCID: PMC5725546 DOI: 10.2174/1570159x15666170504095823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Opioids are widely used in pain management, acting via opioid receptors and/or Toll-like receptors (TLR) present at the central nervous system (CNS). At the blood-brain barrier (BBB), several influx and efflux transporters, such as the ATP-binding cassette (ABC) P-glycoprotein (P-gp, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRP, ABCC) transporters, and solute carrier transporters (SLC), are responsible for the transport of xenobiotics from the brain into the bloodstream or vice versa. Objective: ABC transporters export several clinically employed opioids, altering their neuro- pharmacokinetics and CNS effects. In this review, we explore the interactions between opioids and ABC transporters, and decipher the molecular mechanisms by which opioids can modify their expression at the BBB. Results: P-gp is largely implicated in the brain-to-blood efflux of opioids, namely morphine and oxycodone. Long-term ex-posure to morphine and oxycodone has proven to up-regulate the expression of ABC transporters, such as P-gp, BCRP and MRPs, at the BBB, which may lead to increased tolerance to the antinociceptive effects of such drugs. Recent studies uncov-er two mechanisms by which morphine may up-regulate P-gp and BCRP at the BBB: 1) via a glutamate, NMDA-receptor and COX-2 signaling cascade, and 2) via TLR4 activation, subsequent development of neuro- inflammation, and activation of NF-κB, presumably via glial cells. Conclusion: The BBB-opioid interaction can culminate in bilateral consequences, since ABC transporters condition the brain disposition of opioids, while opioids also affect the expression of ABC transporters at the BBB, which may result in increased CNS drug pharmacoresistance.
Collapse
Affiliation(s)
- Catarina Chaves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Fernando Remiao
- REQUIMTE, Laboratorio de Toxicologia, Departamento de Ciencias Biologicas, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | - Salvatore Cisternino
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| | - Xavier Decleves
- Variabilite de Reponse Aux Psychotropes, INSERM, U1144, 75006 Paris, France.,Universite Paris Descartes, UMR-S 1144, Paris, F-75006, France.,Universite Paris Diderot, UMR-S 1144, Paris, F-75013, France.,Assistance Publique Hopitaux de Paris, AP-HP, Paris, France
| |
Collapse
|
7
|
Gharavi R, Hedrich W, Wang H, Hassan HE. Transporter-Mediated Disposition of Opioids: Implications for Clinical Drug Interactions. Pharm Res 2015; 32:2477-502. [PMID: 25972096 DOI: 10.1007/s11095-015-1711-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
Opioid-related deaths, abuse, and drug interactions are growing epidemic problems that have medical, social, and economic implications. Drug transporters play a major role in the disposition of many drugs, including opioids; hence they can modulate their pharmacokinetics, pharmacodynamics and their associated drug-drug interactions (DDIs). Our understanding of the interaction of transporters with many therapeutic agents is improving; however, investigating such interactions with opioids is progressing relatively slowly despite the alarming number of opioids-mediated DDIs that may be related to transporters. This review presents a comprehensive report of the current literature relating to opioids and their drug transporter interactions. Additionally, it highlights the emergence of transporters that are yet to be fully identified but may play prominent roles in the disposition of opioids, the growing interest in transporter genomics for opioids, and the potential implications of opioid-drug transporter interactions for cancer treatments. A better understanding of drug transporters interactions with opioids will provide greater insight into potential clinical DDIs and could help improve opioids safety and efficacy.
Collapse
Affiliation(s)
- Robert Gharavi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Rooms: N525 (Office), Baltimore, Maryland, 21201, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
|
10
|
Bastami S, Haage P, Kronstrand R, Kugelberg FC, Zackrisson AL, Uppugunduri S. Pharmacogenetic aspects of tramadol pharmacokinetics and pharmacodynamics after a single oral dose. Forensic Sci Int 2014; 238:125-32. [PMID: 24709712 DOI: 10.1016/j.forsciint.2014.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 01/16/2023]
Abstract
The major purpose of this study was to elucidate if genotyping can facilitate interpretations of tramadol (TRA) in forensic case work, with special regard to the estimation of the time of drug intake and drug related symptoms (DRS). The association between genetic polymorphisms in CYP2D6, OPRM1 and ABCB1 and pharmacokinetic and pharmacodynamic properties of TRA was studied. Nineteen healthy volunteers were randomized into two groups receiving a single dose of either 50 or 100mg of orally administrated TRA. Blood samples were collected prior to dosing and up to 72h after drug intake. The subjects were asked to report DRS during the experimental day. We found a positive correlation between the metabolic ratio of O-desmethyltramadol (ODT) to TRA and the time after drug intake for both CYP2D6 intermediate metabolizers and extensive metabolizers. For the only poor metabolizer with detectable ODT levels the metabolic ratio was almost constant. Significant associations were found between the area under the concentration-time curve (AUC) and three of the investigated ABCB1 single nucleotide polymorphisms for TRA, but not for ODT and only in the 50mg dosage group. There was great interindividual variation in DRS, some subjects exhibited no symptoms at all whereas one subject both fainted and vomited after a single therapeutic dose. However, no associations could be found between DRS and investigated polymorphisms. We conclude that the metabolic ratio of ODT/TRA may be used for estimation of the time of drug intake, but only when the CYP2D6 genotype is known and taken into consideration. The influence of genetic polymorphisms in ABCB1 and OPRM1 requires further study.
Collapse
Affiliation(s)
- Salumeh Bastami
- Department of Medical and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden
| | - Pernilla Haage
- Department of Medical and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden; National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Linköping, Sweden
| | - Robert Kronstrand
- Department of Medical and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden; National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Linköping, Sweden
| | - Fredrik C Kugelberg
- Department of Medical and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden; National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Linköping, Sweden
| | - Anna-Lena Zackrisson
- National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, Linköping, Sweden.
| | - Srinivas Uppugunduri
- Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
11
|
Guedes AGP, Knych HK, Soares JHN, Brosnan RJ. Pharmacokinetics and physiological effects of repeated oral administrations of tramadol in horses. J Vet Pharmacol Ther 2013; 37:269-78. [PMID: 24180699 DOI: 10.1111/jvp.12086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Abstract
This study evaluated the pharmacokinetics and physiological effects of tramadol during repeated oral administrations in horses. Nine adult healthy horses were administered tramadol at 5 and 10 mg/kg orally every 12 h for 5 days in a randomized, crossover design with a 3-week washout between treatments. Plasma concentrations of tramadol, O- and N-desmethyltramadol (M1 and M2) were measured using Liquid-Chromatography-Mass Spectrometry at predetermined time points following each tramadol administration. Cardiovascular, respiratory and gastrointestinal physiological variables were monitored and adverse events were recorded. Data were analysed with two-way repeated measures anova or Kruskal-Wallis one-way anova on ranks with P < 0.05 considered statistically significant. There were no significant effects of tramadol on the physiological variables. One horse receiving 10 mg/kg tramadol developed mild colic. Following tramadol at 5 and 10 mg/kg, respectively, maximum plasma concentrations (Cmax ) of tramadol ranged from 82-587 and 127-1280 ng/mL, nonconjugated M1 ranged from 2.51-26.7 and 4.88-34.3 ng/mL, and nonconjugated M2 from 12.5-356 and 35.4-486 ng/mL. Corresponding minimum plasma concentrations (Cmin ) of tramadol at 12 h following each dose ranged from 0.8-24 and 3-117 ng/mL. Tramadol accumulated considerably over time, more markedly when given at 10 mg/kg than at 5 mg/kg (accumulation indexes of 3.51 and 1.73 respectively). There was no accumulation of M1 but substantial accumulation of M2. In conclusion, there was accumulation and increase in exposure to tramadol and M2, but not M1, during repeated oral administrations in horses.
Collapse
Affiliation(s)
- A G P Guedes
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
12
|
Pharmacogenetics of chronic pain and its treatment. Mediators Inflamm 2013; 2013:864319. [PMID: 23766564 PMCID: PMC3671679 DOI: 10.1155/2013/864319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022] Open
Abstract
This paper reviews the impact of genetic variability of drug metabolizing enzymes, transporters, receptors, and pathways involved in chronic pain perception on the efficacy and safety of analgesics and other drugs used for chronic pain treatment. Several candidate genes have been identified in the literature, while there is usually only limited clinical evidence substantiating for the penetration of the testing for these candidate biomarkers into the clinical practice. Further, the pain-perception regulation and modulation are still not fully understood, and thus more complex knowledge of genetic and epigenetic background for analgesia will be needed prior to the clinical use of the candidate genetic biomarkers.
Collapse
|
13
|
Matouskova O, Slanar O, Chytil L, Perlik F. Pupillometry in healthy volunteers as a biomarker of tramadol efficacy. J Clin Pharm Ther 2010; 36:513-7. [DOI: 10.1111/j.1365-2710.2010.01203.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Rollason V, Samer C, Piguet V, Dayer P, Desmeules J. Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 2008; 9:905-33. [DOI: 10.2217/14622416.9.7.905] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The use of analgesics is based on the empiric administration of a given drug with clinical monitoring for efficacy and toxicity. However, individual responses to drugs are influenced by a combination of pharmacokinetic and pharmacodynamic factors that can sometimes be regulated by genetic factors. Whereas polymorphic drug-metabolizing enzymes and drug transporters may affect the pharmacokinetics of drugs, polymorphic drug targets and disease-related pathways may influence the pharmacodynamic action of drugs. After a usual dose, variations in drug toxicity and inefficacy can be observed depending on the polymorphism, the analgesic considered and the presence or absence of active metabolites. For opioids, the most studied being morphine, mutations in the ABCB1 gene, coding for P-glycoprotein (P-gp), and in the µ-opioid receptor reduce morphine potency. Cytochrome P450 (CYP) 2D6 mutations influence the analgesic effect of codeine and tramadol, and polymorphism of CYP2C9 is potentially linked to an increase in nonsteroidal anti-inflammatory drug-induced adverse events. Furthermore, drug interactions can mimic genetic deficiency and contribute to the variability in response to analgesics. This review summarizes the available data on the pharmacokinetic and pharmacodynamic consequences of known polymorphisms of drug-metabolizing enzymes, drug transporters, drug targets and other nonopioid biological systems on central and peripheral analgesics.
Collapse
Affiliation(s)
- Victoria Rollason
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Caroline Samer
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Valerie Piguet
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Pierre Dayer
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| | - Jules Desmeules
- Geneva University Hospital, University of Geneva, Clinical Pharmacology & Toxicology, Micheli-du-Crest Street 24, 1211 Geneva 14, Switzerland
| |
Collapse
|
16
|
Ardakani YH, Rouini MR. Pharmacokinetics of tramadol and its three main metabolites in healthy male and female volunteers. Biopharm Drug Dispos 2007; 28:527-34. [PMID: 17891748 DOI: 10.1002/bdd.584] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
By using a high-performance liquid chromatography method, the pharmacokinetics of the tramadol (T) and its three main metabolites, O-desmethyltramadol (M1), N-desmethyltramadol (M2) and O,N-didesmethyltramadol (M5) was studied in healthy male and female Iranian volunteers after oral administration of two 50 mg tramadol hydrochloride tablets. The related pharmacokinetic parameters such as C(max), T(max), AUC((0-t)), AUC((0-infinity)), T(1/2) and Cl/F were calculated and compared between the two genders. No significant differences were found in the systemic exposure and pharmacokinetic of tramadol, M1 and M2 while there were significant differences in AUCs of M5 in the two genders. It was concluded that to get a more accurate result, the gender dependency of T and its metabolites might be studied in specific phenotypes.
Collapse
Affiliation(s)
- Yalda H Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, 14155-6451, Tehran, Iran
| | | |
Collapse
|