1
|
Cho CK, Kang P, Jang CG, Lee YJ, Bae JW, Choi CI, Lee SY. Effects of fluconazole on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in different CYP2C9 genotypes. Arch Pharm Res 2025; 48:224-233. [PMID: 39730940 DOI: 10.1007/s12272-024-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to investigate the effects of fluconazole, a moderate inhibitor of CYP2C9 and CYP3A4, on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in different CYP2C9 genotypes. A total of thirty-nine healthy Korean male volunteers were divided into three different CYP2C9 genotype groups (CYP2C9*1/*1, *1/*3 and *3/*3 genotypes) and were enrolled in the celecoxib alone trial, celecoxib with fluconazole trial, or both. In the celecoxib alone trial, participants received a single oral dose of 200 mg celecoxib. In the celecoxib with fluconazole trial, participants received 300 mg fluconazole on day 1, 150 mg fluconazole once daily for four consecutive days (day 2-5), and a coadministration of 200 mg celecoxib with 150 mg fluconazole on day 6. Plasma concentrations of celecoxib and celecoxib carboxylic acid were determined by using HPLC-MS/MS. In the CYP2C9*1/*1 genotype group, fluconazole treatment increased AUCinf of celecoxib by 2.61-fold, and decreased CL/F by 60.4% (both p < 0.001). In the CYP2C9*1/*3 genotype group, fluconazole treatment increased AUCinf of celecoxib by 2.44-fold (p < 0.001), prolonged t1/2 by 1.36-fold (p < 0.05), and decreased CL/F by 60.4% (p < 0.001). Fluconazole treatment increased AUCinf of celecoxib by 2.23-fold, prolonged t1/2 by 1.64-fold, and decreased CL/F by 53.8% in the subject with CYP2C9*3/*3 genotype. Cmax of celecoxib carboxylic acid significantly decreased in CYP2C9*1/*1 and *1/*3 genotypes (p < 0.01 and p < 0.05, respectively), following fluconazole treatment, whereas AUCinf showed no significant changes in any CYP2C9 genotype group. In conclusion, fluconazole affected the pharmacokinetics of celecoxib in different CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Khan H, Zamir A, Imran I, Saeed H, Alqahtani F, Majeed A, Aziz M, Rasool MF. Clinical pharmacokinetics of glipizide: a systematic review. Expert Opin Drug Metab Toxicol 2025; 21:69-79. [PMID: 39267225 DOI: 10.1080/17425255.2024.2402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Glipizide is an oral antidiabetic drug widely used to treat non-insulin-dependent type II diabetes mellitus (NIDDM). This systematic review extensively examines all reported pharmacokinetic (PK) parameters of glipizide in healthy and diseased populations. AREAS COVERED A total of 31 articles were retrieved after screening various databases, i.e. Google Scholar, PubMed, Science Direct, and Cochrane, regarding the PK parameters of glipizide in healthy, diseased, drug-drug, and drug-food interaction studies. The Cmax was 35% higher in healthy Koreans than in Caucasian Americans. In type II diabetes patients, the AUC0-∞ increases ~2-fold after multiple dosage regimen in comparison with a single dose. Furthermore, the Cmax increased in fasting conditions compared to the non-fasting state in diabetic individuals i.e. 1338.28 ± 125.18 ng/mL and 1297.29 ± 47.22 ng/mL, respectively. EXPERT OPINION The presented data has depicted that glipizide exposure varies between single and multiple dosing and its Cmax also changes between different demographic populations. Since it has a shorter half-life, the development of its new extended-release formulations may assist practitioners in improving adherence among diabetic patients. PROSPERO REGISTRATION NO CRD42024538428.
Collapse
Affiliation(s)
- Hina Khan
- Department of Pharmacy Practice, Bahauddin Zakariya University, Multan, Pakistan
| | - Ammara Zamir
- Department of Pharmacy Practice, Bahauddin Zakariya University, Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Saeed
- Allama Iqbal Campus, University College of Pharmacy, Lahore, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Majeed
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Majid Aziz
- Department of Pharmacy Practice, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
3
|
Pharmacokinetic Herb-Drug Interactions of Glipizide with Andrographis paniculata (Burm. f.) and Andrographolide in Normal and Diabetic Rats by Validated HPLC Method. Molecules 2022; 27:molecules27206901. [PMID: 36296494 PMCID: PMC9609824 DOI: 10.3390/molecules27206901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Co-administered medicinal herbs can modify a drug’s pharmacokinetics (PK), effectiveness, and toxicity. Andrographis paniculata (Burm. f.) ethanolic extract (APE) and andrographolide (AND) (a potent CYP2C9 inducer/inhibitor) can alter the pharmacokinetic parameters of glipizide (GLZ). This study aimed to determine the potential pharmacokinetics of herb−drug interactions between GLZ and APE/AND in the plasma of normal and diabetic rats using the HPLC bioanalysis method. The glipizide bioanalytical method established with RP-HPLC/UV instrument was validated following the EMA guidelines. GLZ was administered alone and in combination with APE or AND to normal and diabetic rats. The GLZ pharmacokinetic parameters were estimated according to the correlation between concentration and sampling time using the PK solver program. A simple and rapid GLZ bioanalysis technique with a lower limit of quantitation of 25 ng/mL was developed and presented the following parameters: accuracy (error ≤ 15%), precision (CV ≤ 15%), selectivity, stability, and linearity (R2 = 0.998) at concentrations ranging 25−1500 ng/mL. APE administration significantly improved the Cmax and AUC0−t/AUC0−∞ GLZ values in normal and diabetic rats (p < 0.05). AND significantly reduced the bioavailability of GLZ in diabetic rats with small values of T 1/2, Cmax, and AUC0−t/AUC0−∞ (p < 0.05). This combination can be considered in administering medications because it can influence the pharmacological effects of GLZ.
Collapse
|
4
|
Kim NT, Cho CK, Kang P, Park HJ, Lee YJ, Bae JW, Jang CG, Lee SY. Effects of CYP2C9*3 and *13 alleles on the pharmacokinetics and pharmacodynamics of glipizide in healthy Korean subjects. Arch Pharm Res 2021; 45:114-121. [PMID: 34952963 DOI: 10.1007/s12272-021-01366-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022]
Abstract
Glipizide is a second-generation sulfonylurea antidiabetic drug. It is principally metabolized to inactive metabolites by genetically polymorphic CYP2C9 enzyme. In this study, we investigated the effects of CYP2C9*3 and *13 variant alleles on the pharmacokinetics and pharmacodynamics of glipizide. Twenty-four healthy Korean volunteers (11 subjects with CYP2C9*1/*1, 8 subjects with CYP2C9*1/*3, and 5 subjects with CYP2C9*1/*13) were recruited for this study. They were administered a single oral dose of glipizide 5 mg. The plasma concentration of glipizide was quantified for pharmacokinetic analysis and plasma glucose and insulin concentrations were measured as pharmacodynamic parameters. The results represented that CYP2C9*3 and *13 alleles significantly affected the pharmacokinetics of glipizide. In subjects with CYP2C9*1/*3 and CYP2C9*1/*13 genotypes, the mean AUC0-∞ were increased by 44.8% and 58.2%, respectively (both P < 0.001), compared to those of subjects with CYP2C9*1/*1 genotype, while effects of glipizide on plasma glucose and insulin levels were not significantly different between CYP2C9 genotype groups. In conclusion, individuals carrying the defective CYP2C9*3 and CYP2C9*13 alleles have markedly elevated plasma concentrations of glipizide compared with CYP2C9*1/*1 wild-type.
Collapse
Affiliation(s)
- Nam-Tae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Wang K, Yang A, Shi M, Tam CCH, Lau ESH, Fan B, Lim CKP, Lee HM, Kong APS, Luk AOY, Tomlinson B, Ma RCW, Chan JCN, Chow E. CYP2C19 Loss-of-function Polymorphisms are Associated with Reduced Risk of Sulfonylurea Treatment Failure in Chinese Patients with Type 2 Diabetes. Clin Pharmacol Ther 2021; 111:461-469. [PMID: 34656068 PMCID: PMC9297921 DOI: 10.1002/cpt.2446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 01/14/2023]
Abstract
Sulfonylureas (SUs) are predominantly metabolized by cytochrome p450 2C9 (CYP2C9) and cytochrome p450 2C19 (CYP2C19) enzymes. CYP2C9 polymorphisms are associated with greater treatment response and hypoglycemic risk in SU users. However, there are no large scale pharmacogenetic studies investigating the effect of loss‐of‐function alleles CYP2C19*2 and CYP2C19*3, which occur frequently in East Asians. Retrospective pharmacogenetic analysis was performed in 11,495 genotyped patients who were enrolled in the Hong Kong Diabetes Register between 1995 and 2017, with follow‐up to December 31, 2019. The associations of CYP2C19 polymorphisms with SU treatment failure, early HbA1c response, and severe hypoglycemia were analyzed by Cox regression or logistic regression assuming an additive genetic model. There were 2341 incident SU users that were identified (mean age 59 years, median diabetes duration 9 years), of which 324 were CYP2C19 poor metabolizers (CYP2C19 *2/*2 or *2/*3 or *3/*3). CYP2C19 poor metabolizers had lower risk of SU treatment failure (hazard ratio 0.83, 95% confidence interval (CI) 0.72–0.97, P = 0.018) and were more likely to reach the HbA1c treatment target < 7% (odds ratio 1.52, 95% CI 1.02–2.27, P = 0.039) than wild‐type carriers (CYP2C19 *1/*1) following adjustment for multiple covariates. There were no significant differences in severe hypoglycemia rates among different CYP2C19 genotype groups. CYP2C19 polymorphisms should be considered during personalization of SU therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claudia C H Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Eric S H Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Chow E, Poon EW, Fok BS, Chan JC, Tomlinson B. CYP2C19*2 Polymorphism Is Associated with Impaired Oral Clearance of Gliclazide in Healthy Chinese. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:397-401. [PMID: 32099442 PMCID: PMC6997415 DOI: 10.2147/pgpm.s226200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/28/2019] [Indexed: 01/30/2023]
Abstract
Background Previous studies suggest gliclazide is metabolised primarily by CYP2C19 rather than CYP2C9, unlike other sulphonylureas. CYP2C19 *2 and *3 polymorphisms are more common in Asians. Methods We investigated the effect of CYP2C19 polymorphisms on gliclazide pharmacokinetics in 15 healthy male Chinese subjects after a single 80mg oral dose. Results In CYP2C19 poor metabolisers (*2/*2, n=4), plasma area-under-the-curve was higher by nearly two-fold compared with intermediate metabolisers (*2 and *3 heterozygotes, n=7) and extensive metabolisers (*1/*1, n=4) (p<0.001). Apparent oral clearance was mean (SD) 0.70 (0.12), 1.22 (0.22) and 1.52 (0.47) mL/min/kg in poor, intermediate and extensive metabolisers, respectively (p = 0.005). Conclusion CYP2C19*2 polymorphism is associated with increased total gliclazide concentration and reduced oral clearance. Pharmacogenetic studies are warranted on the impact of CYP2C19 polymorphisms on treatment response and hypoglycaemia.
Collapse
Affiliation(s)
- Elaine Chow
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Emily Wm Poon
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Benny Sp Fok
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Brian Tomlinson
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong.,Faculty of Medicine, Macau University of Science & Technology, Taipa, Macau
| |
Collapse
|
7
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
8
|
Mosikian A, Dolgorukova A, Zalevskaya A. Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia. Pharmacogenomics 2016; 17:2115-2126. [PMID: 27885968 DOI: 10.2217/pgs-2016-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM To evaluate a possible role of CYP2C9 genotyping for sulfonylureas (SUs) prescription in Russia. MATERIALS & METHODS We have collected the current data on correlation between SUs pharmacodynamics and CYP2C9 polymorphisms. We have evaluated the frequency of CYP2C9 polymorphisms in Russia by reviewing the literature published from 2004 to 2015 on Russian CYP2C9. RESULTS The genotype *1/*1, which confers risk for treatment failure, has a higher frequency (81.92%) in the non-Caucasians than that (64.92%) in the Caucasians. The Caucasians have a frequency (3.58%) of the poor metabolizers (*2/*2, *2/*3 and *3/*3) eight-times higher than that (0.44%) in the non-Caucasians, predisposing an increased risk of hypoglycemia. CONCLUSION Considering the received data and the existed knowledge on CYP2C9 influence on SUs pharmacokinetics and pharmacodynamics, we propose a possible approach to CYP2C9-guided SUs prescription for Russians.
Collapse
Affiliation(s)
- Anna Mosikian
- Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - Antonina Dolgorukova
- Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - Alsu Zalevskaya
- Department of Endocrinology, Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
9
|
Yang P, Heredia VO, Beltramo DM, Soria NW. Pharmacogenetics and personalized treatment of type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Zeng W, Guo Y, Chen P, Liu Z, Chen D, Han C. CYP2C93 variant is associated with antidiabetes efficacy of gliclazide in Chinese type 2 diabetes patients. J Diabetes Investig 2016; 7:764-8. [PMID: 27181593 PMCID: PMC5009140 DOI: 10.1111/jdi.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Aims/Introduction The objective of the present study was to investigate the effects of CYP2C9*3 polymorphisms on the therapeutic response to gliclazide in type 2 diabetes patients. Materials and Methods A total of 746 incident type 2 diabetes patients were included in this study. After enrolment, patients went on 4‐week gliclazide monotherapy. Fasting plasma glucose was measured before and after treatment. Hypoglycemia episodes and lifestyle information were collected by weekly follow up. Genotyping of rs1057910 was carried out using the single base primer extension method. The t‐test, analysis of variance and chisquare‐test were used to evaluate the effects of rs1057910 alleles on the therapeutic response to gliclazide. Results After the therapy, fasting plasma glucose decreased significantly from 11.2 ± 2.7 mmol/L to 8.0 ± 2.2 mmol/L (P < 0.001). Patients with AC/CC genotypes of rs1057910 had a greater reduction of fasting plasma glucose (3.6 vs 3.0 mmol/L, P < 0.001; 31.4 vs 24.5%, P < 0.001) and a higher rate of treatment success (54.7 vs 37.5%, P < 0.001; 51.4 vs 32.3%, P < 0.001; 71.6 vs 48.3%, P < 0.001 for criterion 1, 2 and 3, respectively). Conclusions The present study showed that the polymorphism at rs1057910 significantly affected the therapeutic response of gliclazide in type 2 diabetes mellitus patients. The risk allele is associated with a greater decrease of fasting blood glucose and a higher rate of treatment success with gliclazide monotherapy. This study demonstrated that polymorphism at rs1057910 significantly affected therapeutic response of gliclazide in type 2 diabetes mellitus patients. It associated with the decrease of FPG and the rate of treatment success in the gliclazide monotherapy.
Collapse
Affiliation(s)
- Wotan Zeng
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Yali Guo
- Department of Endocrinology, Central Hospital of Shenzhen Guangming New District, Shenzhen, China
| | - Peixian Chen
- Medical College, Shantou, Guangdong Province, China
| | - Zhike Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Chunji Han
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
11
|
Leonard CE, Bilker WB, Brensinger CM, Han X, Flory JH, Flockhart DA, Gagne JJ, Cardillo S, Hennessy S. Severe hypoglycemia in users of sulfonylurea antidiabetic agents and antihyperlipidemics. Clin Pharmacol Ther 2016; 99:538-47. [PMID: 26566262 DOI: 10.1002/cpt.297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/07/2015] [Indexed: 12/15/2022]
Abstract
Drug-drug interactions causing severe hypoglycemia due to antidiabetic drugs is a major clinical and public health problem. We assessed whether sulfonylurea use with a statin or fibrate was associated with severe hypoglycemia. We conducted cohort studies of users of glyburide, glipizide, and glimepiride plus a statin or fibrate within a Medicaid population. The outcome was a validated, diagnosis-based algorithm for severe hypoglycemia. Among 592,872 persons newly exposed to a sulfonylurea+antihyperlipidemic, the incidence of severe hypoglycemia was 5.8/100 person-years. Adjusted hazard ratios (HRs) for sulfonylurea+statins were consistent with no association. Most overall HRs for sulfonylurea+fibrate were elevated, with sulfonylurea-specific adjusted HRs as large as 1.50 (95% confidence interval (CI): 1.24-1.81) for glyburide+gemfibrozil, 1.37 (95% CI: 1.11-1.69) for glipizide+gemfibrozil, and 1.63 (95% CI: 1.29-2.06) for glimepiride+fenofibrate. Concomitant therapy with a sulfonylurea and fibrate is associated with an often delayed increased rate of severe hypoglycemia.
Collapse
Affiliation(s)
- C E Leonard
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - W B Bilker
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C M Brensinger
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - X Han
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J H Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Healthcare Policy and Research, Division of Comparative Effectiveness, Weill Cornell Medical College, New York, New York, USA
| | - D A Flockhart
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J J Gagne
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - S Cardillo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - S Hennessy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Pharmacoepidemiology Research and Training, Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Schelleman H, Han X, Brensinger CM, Quinney SK, Bilker WB, Flockhart DA, Li L, Hennessy S. Pharmacoepidemiologic and in vitro evaluation of potential drug-drug interactions of sulfonylureas with fibrates and statins. Br J Clin Pharmacol 2015; 78:639-48. [PMID: 24548191 DOI: 10.1111/bcp.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
AIMS To examine whether initiation of fibrates or statins in sulfonylurea users is associated with hypoglycaemia, and examine in vitro inhibition of cytochrome P450 (CYP) enzymes by statins, fenofibrate and glipizide. METHODS We used healthcare data to conduct nested case-control studies of serious hypoglycaemia (i.e. resulting in hospital admission or emergency department treatment) in persons taking glipizide or glyburide, and calculated adjusted overall and time-stratified odds ratios (ORs) and 95% confidence intervals (CIs). We also characterized the in vitro inhibition of CYP enzymes by statins, fenofibrate and glipizide using fluorometric CYP450 inhibition assays, and estimated area under the concentration-time curve ratios (AUCRs) for the drug pairs. RESULTS We found elevated adjusted overall ORs for glyburide-fenofibrate (OR 1.84, 95% CI 1.37, 2.47) and glyburide-gemfibrozil (OR 1.57, 95% CI 1.25, 1.96). The apparent risk did decline over time as might be expected from a pharmacokinetic mechanism. Fenofibrate was a potent in vitro inhibitor of CYP2C19 (IC50 = 0.2 μm) and CYP2B6 (IC50 = 0.7 μm) and a moderate inhibitor of CYP2C9 (IC50 = 9.7 μm). The predicted CYP-based AUCRs for fenofibrate-glyburide and gemfibrozil-glyburide interactions were only 1.09 and 1.04, suggesting that CYP inhibition is unlikely to explain such an interaction. CONCLUSIONS Use of fenofibrate or gemfibrozil together with glyburide was associated with elevated overall risks of serious hypoglycaemia. CYP inhibition seems unlikely to explain this observation. We speculate that a pharmacodynamic effect of fibrates (e.g. activate peroxisome proliferator-activator receptor alpha) may contribute to these apparent interactions.
Collapse
Affiliation(s)
- H Schelleman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol 2014; 70:421-8. [PMID: 24442125 DOI: 10.1007/s00228-014-1641-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/01/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Sulphonylureas (SU) are widely used in the management of type 2 diabetes. We investigated the influence of CYP2C9, KCNJ11 and ABCC8 polymorphisms on the response to SU currently used in everyday clinical practice. METHODS Patients treated for type 2 diabetes with sulphonylurea in monotherapy (n = 21) or in combination with metformin (n = 135) were provided with glucose-monitoring devices and instructed to measure fasting blood glucose levels once per week and additionally at any signs and symptoms suggesting low blood glucose for a period of three months. All patients were genotyped for CYP2C9 rs1799853 and rs1057910 (*2 and *3 allele, respectively), KCNJ11 rs5219 and rs5215, and ABCC8 rs757110. RESULTS The average duration of diabetes in the study group was 10.6 ± 7.1 years. Most of the patients achieved relatively good blood glucose control (HbA1c 7.0 ± 0.9). In total, 76 hypoglycemia events were observed (mean 0.48 ± 1.3). No severe hypoglycemia was reported; the lowest blood glucose was 2.1 mmol/l. Although 124 (79.5 %) patients never experienced hypoglycemia, 32 (20.5 %) patients experienced from one to eight events. None of the investigated polymorphisms influenced HbA1c levels or risk for hypoglycemia episodes in the whole group of patients. CYP2C9 genotype significantly influenced the occurrence of hypoglycemia events among the elderly patients (aged 60 years and over; n = 103). Among them, carriers of two wild-type alleles suffered 0.36 ± 0.98 events, while patients with one or two polymorphic alleles had 0.79 ± 1.7 or 2.67 ± 4.6 events, respectively (p = 0.014). CONCLUSIONS Our results indicate that the CYP2C9 genotype may influence the risk for hypoglycemia events in elderly patients, but not in the overall population of type 2 diabetes patients.
Collapse
|
14
|
Manolopoulos VG, Ragia G. Pharmacogenomics of Oral Antidiabetic Drugs. HANDBOOK OF PHARMACOGENOMICS AND STRATIFIED MEDICINE 2014:683-713. [DOI: 10.1016/b978-0-12-386882-4.00030-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Holstein A, Beil W, Kovacs P. CYP2C metabolism of oral antidiabetic drugs--impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug Metab Toxicol 2013; 8:1549-63. [PMID: 23153186 DOI: 10.1517/17425255.2012.722619] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The cytochrome P4502C enzymes account for the metabolism of approximately 20% of therapeutic drugs including certain oral antidiabetic drugs (OADs). AREAS COVERED This review focuses on the effect of CYP2C enzymes on metabolism of sulphonylureas (SUs), meglitinides, and thiazolidinediones (TZDs) discussing their impact on pharmacokinetics, drug interactions and toxicological profiles. Pharmacogenetic aspects reflecting individual gene variants and variable drug effects are also considered. EXPERT OPINION Genetic polymorphisms of CYP2C9 enzymes (*2/*2, *2/*3, *3/*3) influence the glycaemic response to SUs and impair their substrate metabolism. Restricted data from small-sized studies with heterogenous definitions of hypoglycaemia revealed no clear association between CYP2C9 genotypes and the risk of hypoglycaemia. Functional polymorphisms of CYP2C8- and CYP2C9 drug metabolizing genes affect markedly pharmacokinetics of meglitinides. Compared to wild-type carriers, patients treated with TZDs and carrying the common CYP2C8*3 and *4 variants showed a reduced glycaemic control. The strong CYP2C8 and OATP1B1 inhibitor gemfibrozil increases substantially the plasma concentrations of repaglinide and TZDs. Numerous metabolic drug interactions exist between SUs and commonly prescribed drugs, especially anti-infectives. The complex pharmacokinetic and pharmacogenetic properties and the unfavourable short and long term risk profile of glibenclamide and glimepiride raise the question whether their use can be justified any longer.
Collapse
Affiliation(s)
- Andreas Holstein
- Lippe-Detmold Hospital, First Department of Medicine, Röntgenstr. 18, Detmold, 32756, Germany.
| | | | | |
Collapse
|
16
|
Hirota T, Eguchi S, Ieiri I. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet 2012; 28:28-37. [PMID: 23165865 DOI: 10.2133/dmpk.dmpk-12-rv-085] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cytochrome P450 (CYP) is a superfamily of hemoproteins which oxidize a number of endogenous compounds and xenobiotics. The human CYP2C subfamily consists of four members: CYP2C8, CYP2C9, CYP2C18 and CYP2C19. CYP2C9 and CYP2C19 are important drug-metabolizing enzymes and together metabolize approximately 20% of therapeutically used drugs. Forty-two allelic variants for CYP2C9 and 34 for CYP2C19 have been reported. The frequencies of these variants show marked inter-ethnic variation. The functional consequences of genetic polymorphisms have been examined, and many studies have shown the clinical importance of these polymorphisms. Current evidence suggests that taking the genetically determined metabolic capacity of CYP2C9 and CYP2C19 into account has the potential to improve individual risk/benefit relationships. However, more prospective studies with clinical endpoints are needed before the paradigm of "personalized medicine" based on the variants can be established. This review summarizes the currently available important information on this topic.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
17
|
Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 2012; 51:277-304. [PMID: 22448619 DOI: 10.2165/11599410-000000000-00000] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown. In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes. This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults. Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.
Collapse
Affiliation(s)
- Margreke J E Brill
- Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci 2012; 33:312-22. [PMID: 22475684 DOI: 10.1016/j.tips.2012.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022]
Abstract
There is a growing epidemic of type 2 diabetes (T2DM), and it is associated with various comorbidities. Patients with T2DM are usually treated with multiple drugs, and are therefore at an increased risk of harmful drug-drug interactions (DDIs). Several potentially life-threatening DDIs concerning oral antidiabetic drugs have been identified. This has mostly been initiated by case reports but, more recently, the understanding of their mechanisms has greatly increased. In this article, we review the pharmacokinetic DDIs concerning oral antidiabetics, including metformin, sulfonylureas, meglitinide analogs, thiazolidinediones and dipeptidyl peptidase-4 inhibitors, and the underlying mechanistic basis that can help to predict and prevent DDIs. In particular, the roles of membrane transporters and cytochrome P450 (CYP) enzymes in these DDIs are discussed.
Collapse
|
19
|
Gökalp O, Gunes A, Cam H, Cure E, Aydın O, Tamer MN, Scordo MG, Dahl ML. Mild hypoglycaemic attacks induced by sulphonylureas related to CYP2C9, CYP2C19 and CYP2C8 polymorphisms in routine clinical setting. Eur J Clin Pharmacol 2011; 67:1223-9. [PMID: 21691805 DOI: 10.1007/s00228-011-1078-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 05/31/2011] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the impact of polymorphisms in the cytochrome P450 (CYP) 2C9, 2C19 and 2C8 genes on the risk of mild hypoglycaemic attacks in patients treated with sulphonylureas. METHODS One hundred and eight type 2 diabetic patients (50 men, 58 women), treated with oral antidiabetics, including at least one from the sulphonylurea group (glimepiride n = 50, gliclazide n = 46, or glipizide n = 12) for 3 months or longer, were included in the study. Symptoms of hypoglycaemia (sweating, tremor, anxiety and palpitations) during a 3 month period were recorded and confirmed by home glucose measurements. Gender, age, body mass index, creatinine clearance, HbA1c, oral antidiabetic dose and concomitant medication were assessed together with functional CYP2C9, CYP2C19 and CYP2C8 polymorphisms, analysed by real-time PCR methods. RESULTS Fifteen patients (eight men, seven women) reported hypoglycaemia symptoms which were validated by their home glucose measurements (< 70 mg/dl). Heterozygosity and homozygosity for CYP2C9 variant alleles (*2 or *3) tended to be more frequent among patients who reported hypoglycaemic attacks (60 and 7%) than those who did not (39 and 3%). Similarly, the CYP2C8*1/*3 genotype tended to be more frequent in patients with (47%) than without (27%) hypoglycaemia, while no such trend was observed for CYP2C19 variants. However, only in the gliclazide group a significant association between CYP2C9 genotype and hypoglycaemic attacks was observed (P = 0.035). None of the other covariates showed any significant association with the risk of hypoglycaemic attacks. CONCLUSIONS CYP2C9 polymorphisms leading to decreased enzyme activity show a modest impact on the risk of mild hypoglycaemia attacks during oral antidiabetic treatment, with a significant association in patients treated with gliclazide.
Collapse
Affiliation(s)
- Osman Gökalp
- Medical Faculty, Department of Pharmacology, Dicle University, Diyarbakir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 2011; 12:1161-91. [PMID: 21843065 DOI: 10.2217/pgs.11.65] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent disease. Several classes of drugs are currently available to treat T2DM patients; however, clinical response to these drugs often exhibits significant variation among individuals. For the oral antidiabetic drug classes of sulfonylureas, nonsulfonylurea insulin secretagogs, biguanides and thiazolidinediones, pharmacogenomic evidence has accumulated demonstrating an association between specific gene polymorphisms and interindividual variability in their therapeutic and adverse reaction effects. These polymorphisms are in genes of molecules involved in metabolism, transport and therapeutic mechanisms of the aforementioned drugs. Overall, it appears that pharmacogenomics has the potential to improve the management of T2DM and help clinicians in the effective prescribing of oral antidiabetic medications. Although pharmacogenomics can explain some of the heterogeneity in dose requirements, response and incidence of adverse effects of drugs between individuals, it is now clearly understood that much of the diversity in drug effects cannot be solely explained by studying the genomic diversity. Epigenomics, the field that focuses on nongenomic modifications that influence gene expression, may expand the scope of pharmacogenomics towards optimization of drug therapy. Therefore, pharmacoepigenomics, the combined analysis of genetic variations and epigenetic modifications, holds promise for the realization of personalized medicine. Although pharmacoepigenomics has so far been evaluated mainly in cancer pharmacotherapy, studies on epigenomic modifications during T2DM development provide useful data on the potential of pharmacoepigenomics to elucidate the mechanisms underlying interindividual response to oral antidiabetic treatment. In summary, the present article focuses on available data from pharmacogenomic studies of oral antidiabetic drugs and also provides an overview of T2DM epigenomic research, which has the potential to boost the development of pharmacoepigenomics in antidiabetic treatment.
Collapse
Affiliation(s)
- Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece.
| | | | | |
Collapse
|
21
|
Mirghani RA, Chowdhary G, Elghazali G. Distribution of the major cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population. Basic Clin Pharmacol Toxicol 2011; 109:111-4. [PMID: 21371265 DOI: 10.1111/j.1742-7843.2011.00692.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP) 2C9 is responsible for the metabolism of a number of widely used drugs such as oral anticoagulants, oral antidiabetics and non-steroidal anti-inflammatory drugs. The CYP2C9 is a genetically polymorphic enzyme. The most common allele is CYP2C9*1, while CYP2C9*2 and CYP2C9*3 are the less-frequent variants. The activity of the enzyme encoded by either CYP2C9 *2 or *3 variant is lower compared with that of the CYP2C9*1. The metabolism of most of the CYP2C9 substrates decreases in varying degrees in subjects carrying the CYP2C9 *2 or *3 allele. The aim of this study was to investigate the frequencies of the major variants of the CYP2C9 in Saudi Arabians.
Collapse
Affiliation(s)
- Rajaa A Mirghani
- King Saud Bin Abdulaziz University for Health Sciences, King Fahad Medical City, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|