1
|
Rietveld PCS, Sassen SDT, Guchelaar NAD, van Eerden RAG, de Boer NL, van den Heuvel TBM, Burger JWA, Mathijssen RHJ, Koch BCP, Koolen SLW. Population pharmacokinetics of intraperitoneal irinotecan and SN-38 in patients with peritoneal metastases from colorectal origin. CPT Pharmacometrics Syst Pharmacol 2024; 13:1006-1016. [PMID: 38634204 PMCID: PMC11179701 DOI: 10.1002/psp4.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Peritoneal metastases (PM) are common in patients with colorectal cancer. Patients with PM have a poor prognosis, and for those who are not eligible for cytoreductive surgery (CRS) with or without hyperthermic intraperitoneal chemotherapy (HIPEC), palliative chemotherapy is currently the only option. Recently, we conducted a phase I trial (INTERACT) in which irinotecan was administered intraperitoneally (IP) to 18 patients ineligible for CRS-HIPEC. The primary objective was to evaluate covariates influencing the PK profile of irinotecan and SN-38 after IP administration. Secondly, a population PK model was developed to support the further development of IP irinotecan by improving dosing in patients with PM. Patients were treated with IP irinotecan every 2 weeks in combination with systemic FOLFOX-bevacizumab. Irinotecan and SN-38 were measured in plasma (588 samples) and SN-38 was measured in peritoneal fluid (267 samples). Concentration-Time data were log-transformed and analyzed using NONMEM version 7.5 using FOCE+I estimation. An additive error model described the residual error, with inter-individual variability in PK parameters modeled exponentially. The final structural model consisted of five compartments. Weight was identified as a covariate influencing the SN-38 plasma volume of distribution and GGT was found to influence the SN-38 plasma clearance. This population PK model adequately described the irinotecan and SN-38 in plasma after IP administration, with weight and GGT as predictive factors. Irinotecan is converted intraperitoneal to SN-38 by carboxylesterases and the plasma bioavailability of irinotecan is low. This model will be used for the further clinical development of IP irinotecan by providing dosing strategies.
Collapse
Affiliation(s)
- Pascale C. S. Rietveld
- Department of Clinical PharmacyErasmus MCRotterdamThe Netherlands
- Department of Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
- Rotterdam Clinical Pharmacometrics GroupRotterdamThe Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Clinical PharmacyErasmus MCRotterdamThe Netherlands
- Rotterdam Clinical Pharmacometrics GroupRotterdamThe Netherlands
| | | | | | - Nadine L. de Boer
- Department of Surgical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | | | - Ron H. J. Mathijssen
- Department of Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Birgit C. P. Koch
- Department of Clinical PharmacyErasmus MCRotterdamThe Netherlands
- Rotterdam Clinical Pharmacometrics GroupRotterdamThe Netherlands
| | - Stijn L. W. Koolen
- Department of Clinical PharmacyErasmus MCRotterdamThe Netherlands
- Department of Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| |
Collapse
|
2
|
Gasthuys E, van Ovost J, Vande Casteele S, Cosyns S, Ceelen W, Van Bocxlaer J, Vermeulen A. Development and validation of an UPLC-MS/MS method for the determination of irinotecan (CPT-11), SN-38 and SN-38 glucuronide in human plasma and peritoneal tumor tissue from patients with peritoneal carcinomatosis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123980. [PMID: 38215697 DOI: 10.1016/j.jchromb.2023.123980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Irinotecan (CPT-11), an antineoplastic drug, is used for the treatment of colorectal and pancreatic cancer due to its topoisomerase I inhibitory activity. CPT-11 is a prodrug which is converted to its active metabolite SN-38 by carboxylesterases. SN-38 is further metabolized to its inactive metabolite SN-38 glucuronide. When evaluating the pharmacokinetic properties of CPT-11 and its metabolites, it is important to accurately assess the concentrations in both plasma as well as tumor tissues. Therefore, the aim of the current study was to develop and validate a robust and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry method to quantify the concentration of CPT-11 and its metabolites (SN-38 and SN-38 glucuronide) in human plasma and peritoneal tumor tissue. The sample preparation of plasma and tumor tissue consisted of protein precipitation and enzymatic digestion/liquid-liquid extraction, respectively. Chromatographic separation was achieved with an Acquity UPLC BEH C18 column combined with a VanGuard pre-column. The mobile phases consisted of water +0.1 % formic acid (mobile phase A) and acetonitrile +0.1 % formic acid (mobile phase B). Mass analysis was performed using a Xevo TQS tandem mass spectrometer in the positive electrospray ionization mode. Method validation was successfully performed by assessing linearity, precision and accuracy, lower limit of quantification, carry over, selectivity, matrix effect and stability according to the following guidelines: "Committee for Medicinal Products for Human use, Guideline on Bioanalytical Method Validation". A cross-validation of the developed method was performed in a pilot pharmacokinetic study, demonstrating the usefulness of the current method to quantify CPT-11 and its metabolites in the different matrices.
Collapse
Affiliation(s)
- Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Judith van Ovost
- Department of Human Structure and Repair, Laboratory of Experimental Surgery Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Vande Casteele
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sarah Cosyns
- Department of Human Structure and Repair, Laboratory of Experimental Surgery Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Laboratory of Experimental Surgery Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of GI Surgery Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
3
|
van de Vlasakker VCJ, Guchelaar NAD, van den Heuvel TBM, Lurvink RJ, van Meerten E, Bax RJF, Creemers GJM, van Hellemond IEG, Brandt-Kerkhof ARM, Madsen EVE, Nederend J, Koolen SLW, Nienhuijs SW, Kranenburg O, de Hingh IHJT, Verhoef C, Mathijssen RHJ, Burger JWA. Intraperitoneal irinotecan with concomitant FOLFOX and bevacizumab for patients with unresectable colorectal peritoneal metastases: protocol of the multicentre, open-label, phase II, INTERACT-II trial. BMJ Open 2024; 14:e077667. [PMID: 38238055 PMCID: PMC10806681 DOI: 10.1136/bmjopen-2023-077667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION The peritoneum is the second most affected organ for the dissemination of colorectal cancer (CRC). Patients with colorectal peritoneal metastases (CPM) face a poor prognosis, despite the majority of patients being treated with palliative systemic therapy. The efficacy of palliative systemic therapy is limited due to the plasma-peritoneum barrier. The poor prognosis of unresectable CPM patients has resulted in the development of new treatment strategies where systemic therapy is combined with local, intraperitoneal chemotherapy. In the recently published phase I study, the maximum tolerated dose and thus the recommended phase II dose of intraperitoneal irinotecan was investigated and determined to be 75 mg. In the present study, the overall survival after treatment with 75 mg irinotecan with concomitant mFOLFOX4 and bevacizumab will be investigated. MATERIALS AND METHODS In this single-arm phase II study in two Dutch tertiary referral centres, 85 patients are enrolled. Eligibility criteria are an adequate performance status and organ function, histologically confirmed microsatellite stable and unresectable CPM, no previous palliative therapy for CRC, no systemic therapy<6 months for CRC prior to enrolment and no previous cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS and HIPEC). Patients will undergo a diagnostic laparoscopy as standard work-up for CPM and if the peritoneal disease is considered unresectable (eg, Peritoneal Cancer Index (PCI)>20, too extensive small bowel involvement), a peritoneal access port and a port-a-cath are placed for administration of intraperitoneal and intravenous chemotherapy, respectively. Patients may undergo up to 12 cycles of study treatment. Each cycle consists of intravenous mFOLFOX4 with bevacizumab and concomitant intraperitoneal irinotecan (75 mg), which is repeated every 2 weeks, with a maximum of 12 cycles. Modified FOLFOX-4 regimen consists of 85 mg/m2 oxaliplatin plus 200 mg/m2 LV and 5-FU 400 mg/m2 bolus on day 1 followed by 1600 mg/m2 5-FU as a 46 hours infusion. Study treatment ends after the 12th cycle, or earlier in case of disease progression or unacceptable toxicity. The primary outcome is overall survival and key secondary outcomes are progression-free survival, safety (measured by the amount of grade ≥3 adverse events (Common Terminology Criteria for Adverse Events V.5.0)), patient-reported outcomes and pharmacokinetics of irinotecan. It is hypothesised that the trial treatment will lead to a 4 month increase in overall survival; from a median of 12.2 to 16.2 months. ETHICS AND DISSEMINATION This study is approved by the Dutch Authority (CCMO, the Hague, the Netherlands), by a central medical ethics committee (MEC-U, Nieuwegein, the Netherlands) and by the institutional research boards of both research centres. Results will be submitted for publication in peer-reviewed medical journals and presented to patients and healthcare professionals. TRIAL REGISTRATION NUMBER NCT06003998.
Collapse
Affiliation(s)
| | | | | | - Robin J Lurvink
- Department of Surgery, Catharina Ziekenhuis, Eindhoven, The Netherlands
| | | | - Ramon J F Bax
- Department of Medical Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | | | | | | | - Eva V E Madsen
- Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Nederend
- Department of Radiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology and Utrecht Platform for Organoid Technology, UMC Utrecht, Utrecht, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
- Maastricht University GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
4
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
5
|
van Eerden RAG, de Boer NL, van Kooten JP, Bakkers C, Dietz MV, Creemers GJM, Buijs SM, Bax R, de Man FM, Lurvink RJ, Diepeveen M, Brandt-Kerkhof ARM, van Meerten E, Koolen SLW, de Hingh IHJT, Verhoef C, Mathijssen RHJ, Burger JWA. Phase I study of intraperitoneal irinotecan combined with palliative systemic chemotherapy in patients with colorectal peritoneal metastases. Br J Surg 2023; 110:1502-1510. [PMID: 37467389 DOI: 10.1093/bjs/znad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Patients with colorectal peritoneal metastases who are not eligible for cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) owing to extensive peritoneal disease have a poor prognosis. It was hypothesized that these patients may benefit from the addition of intraperitoneal irinotecan to standard palliative systemic chemotherapy. METHODS This was a classical 3 + 3 phase I dose-escalation trial in patients with colorectal peritoneal metastases who were not eligible for CRS-HIPEC. Intraperitoneal irinotecan was administered every 2 weeks, concomitantly with systemic FOLFOX (5-fluorouracil, folinic acid, oxaliplatin)-bevacizumab. The primary objective was to determine the maximum tolerated dose and dose-limiting toxicities. Secondary objectives were to elucidate the systemic and intraperitoneal pharmacokinetics, safety profile, and efficacy. RESULTS Eighteen patients were treated. No dose-limiting toxicities were observed with 50 mg (4 patients) and 75 mg (9 patients) intraperitoneal irinotecan. Two dose-limiting toxicities occurred with 100 mg irinotecan among five patients. The maximum tolerated dose of intraperitoneal irinotecan was established to be 75 mg, and it was well tolerated. Intraperitoneal exposure to SN-38 (active metabolite of irinotecan) was high compared with systemic exposure (median intraperitoneal area under the curve (AUC) to systemic AUC ratio 4.6). Thirteen patients had a partial radiological response and five had stable disease. Four patients showed a complete response during post-treatment diagnostic laparoscopy. Five patients underwent salvage resection or CRS-HIPEC. Median overall survival was 23.9 months. CONCLUSION Administration of 75 mg intraperitoneal irinotecan concomitantly with systemic FOLFOX-bevacizumab was safe and well tolerated. Intraperitoneal SN-38 exposure was high and prolonged. As oncological outcomes were promising, intraperitoneal administration of irinotecan may be a good alternative to other, more invasive and costly treatment options. A phase II study is currently accruing.
Collapse
Affiliation(s)
- Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nadine L de Boer
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Job P van Kooten
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Checca Bakkers
- Department of Surgery, Catharina Cancer Institute, Eindhoven, the Netherlands
| | - Michelle V Dietz
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Geert-Jan M Creemers
- Department of Medical Oncology, Catharina Cancer Institute, Eindhoven, the Netherlands
| | - Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ramon Bax
- Department of Medical Oncology, Catharina Cancer Institute, Eindhoven, the Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Robin J Lurvink
- Department of Surgery, Catharina Cancer Institute, Eindhoven, the Netherlands
| | - Marjolein Diepeveen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | | | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacobus W A Burger
- Department of Surgery, Catharina Cancer Institute, Eindhoven, the Netherlands
| |
Collapse
|
6
|
Guchelaar NAD, Noordman BJ, Koolen SLW, Mostert B, Madsen EVE, Burger JWA, Brandt-Kerkhof ARM, Creemers GJ, de Hingh IHJT, Luyer M, Bins S, van Meerten E, Lagarde SM, Verhoef C, Wijnhoven BPL, Mathijssen RHJ. Intraperitoneal Chemotherapy for Unresectable Peritoneal Surface Malignancies. Drugs 2023; 83:159-180. [PMID: 36633826 PMCID: PMC9908703 DOI: 10.1007/s40265-022-01828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Malignancies of the peritoneal cavity are associated with a dismal prognosis. Systemic chemotherapy is the gold standard for patients with unresectable peritoneal disease, but its intraperitoneal effect is hampered by the peritoneal-plasma barrier. Intraperitoneal chemotherapy, which is administered repeatedly into the peritoneal cavity through a peritoneal implanted port, could provide a novel treatment modality for this patient population. This review provides a systematic overview of intraperitoneal used drugs, the performed clinical studies so far, and the complications of the peritoneal implemental ports. Several anticancer drugs have been studied for intraperitoneal application, with the taxanes paclitaxel and docetaxel as the most commonly used drug. Repeated intraperitoneal chemotherapy, mostly in combination with systemic chemotherapy, has shown promising results in Phase I and Phase II studies for several tumor types, such as gastric cancer, ovarian cancer, colorectal cancer, and pancreatic cancer. Two Phase III studies for intraperitoneal chemotherapy in gastric cancer have been performed so far, but the results regarding the superiority over standard systemic chemotherapy alone, are contradictory. Pressurized intraperitoneal administration, known as PIPAC, is an alternative way of administering intraperitoneal chemotherapy, and the first prospective studies have shown a tolerable safety profile. Although intraperitoneal chemotherapy might be a standard treatment option for patients with unresectable peritoneal disease, more Phase II and Phase III studies focusing on tolerability profiles, survival rates, and quality of life are warranted in order to establish optimal treatment schedules and to establish a potential role for intraperitoneal chemotherapy in the approach to unresectable peritoneal disease.
Collapse
Affiliation(s)
- Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Bo J Noordman
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eva V E Madsen
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jacobus W A Burger
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Alexandra R M Brandt-Kerkhof
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Geert-Jan Creemers
- Department of Medical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands.,Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Misha Luyer
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sjoerd M Lagarde
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Bas P L Wijnhoven
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Sakai S, Kobuchi S, Ito Y, Sakaeda T. Assessment of drug-drug interaction and optimization in capecitabine and irinotecan combination regimen using a physiologically based pharmacokinetic model. J Pharm Sci 2021; 111:1522-1530. [PMID: 34965386 DOI: 10.1016/j.xphs.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Capecitabine and irinotecan (CPT-11) combination regimen (XELIRI) is used for colorectal cancer treatment. Capecitabine is metabolized to 5-fluorouracil (5-FU) by three enzymes, including carboxylesterase (CES). CES can also convert CPT-11 to 7-ethyl-10-hydroxycamptotecin (SN-38). CES is involved in the metabolic activation of both capecitabine and CPT-11, and it is possible that drug-drug interactions occur in XELIRI. Here, a physiologically based pharmacokinetic (PBPK) model was developed to evaluate drug-drug interactions. Capecitabine (180 mg/kg) and CPT-11 (180 mg/m2) were administered to rats, and blood (250 μL) was collected from the jugular vein nine times after administration. Metabolic enzyme activities and Ki values were calculated through in vitro experiments. The plasma concentration of 5-FU in XELIRI was significantly decreased compared to capecitabine monotherapy, and metabolism of capecitabine by CES was inhibited by CPT-11. A PBPK model was developed based on the in vivo and in vitro results. Furthermore, a PBPK model-based simulation was performed with the capecitabin dose ranging from 0 to 1000mol/kg in XELIRI, and it was found that an approximately 1.7-fold dosage of capecitabine was required in XELIRI for comparable 5-FU exposure with capecitabine monotherapy. PBPK model-based simulation will contribute to the optimization of colorectal cancer chemotherapy using XELIRI.
Collapse
Affiliation(s)
- Shuhei Sakai
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan..
| |
Collapse
|
8
|
Liu Z, Martin JH, Liauw W, McLachlan SA, Link E, Matera A, Thompson M, Jefford M, Hicks RJ, Cullinane C, Hatzimihalis A, Campbell I, Crowley S, Beale PJ, Karapetis CS, Price T, Burge ME, Michael M. Evaluation of pharmacogenomics and hepatic nuclear imaging-related covariates by population pharmacokinetic models of irinotecan and its metabolites. Eur J Clin Pharmacol 2021; 78:53-64. [PMID: 34480602 DOI: 10.1007/s00228-021-03206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Body surface area (BSA)-based dosing of irinotecan (IR) does not account for its pharmacokinetic (PK) and pharmacodynamic (PD) variabilities. Functional hepatic nuclear imaging (HNI) and excretory/metabolic/PD pharmacogenomics have shown correlations with IR disposition and toxicity/efficacy. This study reports the development of a nonlinear mixed-effect population model to identify pharmacogenomic and HNI-related covariates that impact on IR disposition to support dosage optimization. METHODS Patients had advanced colorectal cancer treated with IR combination therapy. Baseline blood was analysed by Affymetrix DMET™ Plus Array and, for PD, single nucleotide polymorphisms (SNPs) by Sanger sequencing. For HNI, patients underwent 99mTc-IDA hepatic imaging, and data was analysed for hepatic extraction/excretion parameters. Blood was taken for IR and metabolite (SN38, SN38G) analysis on day 1 cycle 1. Population modelling utilised NONMEM version 7.2.0, with structural PK models developed for each moiety. Covariates include patient demographics, HNI parameters and pharmacogenomic variants. RESULTS Analysis included (i) PK data: 32 patients; (ii) pharmacogenomic data: 31 patients: 750 DMET and 22 PD variants; and (iii) HNI data: 32 patients. On initial analysis, overall five SNPs were identified as significant covariates for CLSN38. Only UGT1A3_c.31 T > C and ABCB1_c.3435C > T were included in the final model, whereby CLSN38 reduced from 76.8 to 55.1%. CONCLUSION The identified UGT1A3_c.31 T > C and ABCB1_c.3435C > T variants, from wild type to homozygous, were included in the final model for SN38 clearance.
Collapse
Affiliation(s)
- Zheng Liu
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Clinical Pharmacology, Department of Medicine, The Royal Children's Hospital Melbourne, Melbourne, Australia.,Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Winston Liauw
- Department of Medical Oncology, St. George's Hospital, Sydney, Australia
| | - Sue-Anne McLachlan
- Department of Medical Oncology, St. Vincent's Hospital, Melbourne, Australia
| | - Emma Link
- Biostatistics and Clinical Trials Centre, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia
| | - Anetta Matera
- Biostatistics and Clinical Trials Centre, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Thompson
- Department of Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Jefford
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Rod J Hicks
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia.,Department of Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Carleen Cullinane
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia.,Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Athena Hatzimihalis
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ian Campbell
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia.,Victorian Breast Cancer Research Cooperative (VBCRC) Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Simone Crowley
- Previously Victorian Breast Cancer Research Cooperative (VBCRC) Cancer Genetics Laboratory, The Murdoch Children's Research Institute, The Royal Children's Hospital, Peter MacCallum Cancer Centre), MelbourneMelbourne, Australia
| | - Phillip J Beale
- Department of Medical Oncology, Concord and Royal Prince Alfred Hospital, Sydney, Australia
| | - Christos S Karapetis
- Department of Medical Oncology, Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Adelaide, Australia
| | - Timothy Price
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Mathew E Burge
- Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michael Michael
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, Australia. .,Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
9
|
de Boer NL, Brandt-Kerkhof ARM, Madsen EVE, Diepeveen M, van Meerten E, van Eerden RAG, de Man FM, Bouamar R, Koolen SLW, de Hingh IHJT, Bakkers C, Rovers KP, Creemers GJM, Deenen MJ, Kranenburg OW, Constantinides A, Mathijssen RHJ, Verhoef C, Burger JWA. Concomitant intraperitoneal and systemic chemotherapy for extensive peritoneal metastases of colorectal origin: protocol of the multicentre, open-label, phase I, dose-escalation INTERACT trial. BMJ Open 2019; 9:e034508. [PMID: 31818845 PMCID: PMC6924694 DOI: 10.1136/bmjopen-2019-034508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) has become standard of care for patients with peritoneal metastases of colorectal origin with a low/moderate abdominal disease load. In case of a peritoneal cancer index (PCI) score >20, CRS-HIPEC is not considered to be beneficial. Patients with a PCI >20 are currently offered palliative systemic chemotherapy. Previous studies have shown that systemic chemotherapy is less effective against peritoneal metastases than it is against haematogenous spread of colorectal cancer. It is suggested that patients with peritoneal metastases may benefit from the addition of intraperitoneal chemotherapy to systemic chemotherapy. Aim of this study is to establish the maximum tolerated dose of intraperitoneal irinotecan, added to standard of care systemic therapy for colorectal cancer. Secondary endpoints are to determine the safety and feasibility of this treatment and to establish the pharmacokinetic profile of intraperitoneally administered irinotecan. METHODS AND ANALYSIS This phase I, '3+3' dose-escalation, study is performed in two Dutch tertiary referral centres. The study population consists of adult patients with extensive peritoneal metastases of colorectal origin who have a good performance status and no extra-abdominal metastases. According to standard work-up for CRS-HIPEC, patients will undergo a diagnostic laparoscopy to score the PCI. In case of a PCI >20, a peritoneal access port will be placed in the abdomen of the patient. Through this port we will administer intraperitoneal irinotecan, in combination with standard systemic treatment consisting of 5-fluorouracil/leucovorin with oxaliplatin and the targeted agent bevacizumab. Therapy consists of a maximum of 12 cycles 2-weekly. ETHICS AND DISSEMINATION This study protocol is approved by a research medical ethics committee (Rotterdam, Netherlands) and the Dutch Competent Authority (CCMO, The Hague, Netherlands). The results of this trial will be submitted for publication in a peer-reviewed scientific journal. TRAIL REGISTRATION NUMBER NL6988 and NL2018-000479-33; Pre-results.
Collapse
Affiliation(s)
- Nadine Leonie de Boer
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Eva V E Madsen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marjolein Diepeveen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rachida Bouamar
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Checca Bakkers
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Koen P Rovers
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Geert-Jan M Creemers
- Department of Medical Oncology, Catharina Cancer Institute, Eindhoven, The Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, The Netherlands
| | - Onno W Kranenburg
- Department of Surgical Oncology and Utrecht Platform for Organoid Technology, UMC Utrecht Cancer Centre, Utrecht, The Netherlands
| | - Alexander Constantinides
- Department of Surgical Oncology and Utrecht Platform for Organoid Technology, UMC Utrecht Cancer Centre, Utrecht, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jacobus W A Burger
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Surgery, Catharina Cancer Institute, Eindhoven, The Netherlands
| |
Collapse
|
10
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Willaert W, Van de Sande L, Van Daele E, Van De Putte D, Van Nieuwenhove Y, Pattyn P, Ceelen W. Safety and preliminary efficacy of electrostatic precipitation during pressurized intraperitoneal aerosol chemotherapy (PIPAC) for unresectable carcinomatosis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2019; 45:2302-2309. [PMID: 31221459 DOI: 10.1016/j.ejso.2019.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Pressurized intraperitoneal aerosol chemotherapy (PIPAC) was recently introduced to treat unresectable peritoneal metastases. Adding an electrostatic field may enhance charged droplet precipitation and tissue penetration, resulting in improved anticancer efficacy. We report for the first time its safety and preliminary efficacy. MATERIALS AND METHODS Patients underwent PIPAC combined with an electrostatic field, using the Ultravision™ apparatus. Adverse events were scored with the Common Terminology Criteria. Treatment response was assessed after more than one PIPAC, using clinical symptoms, tumor markers, CT imaging and histological regression. RESULTS Forty-eight patients (median age, 61 y) with diverse primary tumors underwent 135 procedures (median per patient, 3). Most (65.2%) were treated as outpatient. Twenty-eight (58.3%) patients received concomitant chemotherapy. The most frequent treatment-related toxicities were anemia (grade 1 to 3, 13 [9.6%]), ileus (grade 1 to 3, 5 [3.7%]), anorexia (grade 1 to 3, 6 [4.4%]), nausea (grade 1 to 3, 5 [3.7%]) and vomiting (grade 1 to 3, 7 [5.2%]). There was no grade 4 or 5 morbidity. Twenty (41.7%) patients did not complete three treatments, mainly because of disease progression (n = 13). After two procedures, there were one responder and 8 non-responders. After three treatments, we observed 11 responders, two patients with stable disease, and 15 non-responders. All but one patient with therapy response received simultaneous chemotherapy. CONCLUSION Electrostatic precipitation during PIPAC is well tolerated and safe. After three procedures and concomitant chemotherapy, response or stable disease is achieved in approximately half of cases. These findings warrant prospective trials in homogeneous patient cohorts.
Collapse
Affiliation(s)
- W Willaert
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| | - L Van de Sande
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - E Van Daele
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - D Van De Putte
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Y Van Nieuwenhove
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - P Pattyn
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - W Ceelen
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| |
Collapse
|
12
|
Braam HJ, Schellens JH, Boot H, van Sandick JW, Knibbe CA, Boerma D, van Ramshorst B. Selection of chemotherapy for hyperthermic intraperitoneal use in gastric cancer. Crit Rev Oncol Hematol 2015; 95:282-96. [PMID: 25921419 DOI: 10.1016/j.critrevonc.2015.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 04/07/2015] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Several studies have shown the potential benefit of cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in gastric cancer patients. At present the most effective chemotherapeutic regime in HIPEC for gastric cancer is unknown. The aim of this review was to provide a comprehensive overview of chemotherapeutic agents used for HIPEC in gastric cancer. METHODS A literature search was conducted using the PubMed database to identify studies on chemotherapy used for HIPEC in gastric cancer patients. RESULTS AND CONCLUSION The chemotherapeutic regime of choice in HIPEC for gastric cancer has yet to be determined. The wide variety in studies and study parameters, such as chemotherapeutic agents, dosage, patient characteristics, temperature of perfusate, duration of perfusion, carrier solutions, intraperitoneal pressure and open or closed perfusion techniques, warrant more experimental and clinical studies to determine the optimal treatment schedule. A combination of drugs probably results in a more effective treatment.
Collapse
Affiliation(s)
- H J Braam
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands.
| | - J H Schellens
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Science Faculty, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - H Boot
- Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J W van Sandick
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C A Knibbe
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - D Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - B van Ramshorst
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
13
|
Montagner IM, Merlo A, Carpanese D, Zuccolotto G, Renier D, Campisi M, Pasut G, Zanovello P, Rosato A. Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience 2015; 2:373-81. [PMID: 26097871 PMCID: PMC4468323 DOI: 10.18632/oncoscience.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022] Open
Abstract
Management of ovarian cancer still requires improvements in therapeutic options. A drug delivery strategy was tested that allows specific targeting of tumor cells in combination with a controlled release of a cytotoxic molecule. To this aim, the efficacy of a loco-regional intraperitoneal treatment with a bioconjugate (ONCOFID-S) derived by chemical linking of SN-38, the active metabolite of irinotecan (CPT-11), to hyaluronan was assessed in a mouse model of ovarian carcinomatosis. In vitro, the bioconjugate selectively interacted with ovarian cancer cells through the CD44 receptor, disclosed a dose-dependent tumor growth inhibition efficacy comparable to that of free SN-38 drug, and inhibited Topoisomerase I function leading to apoptosis by a mechanism involving caspase-3 and -7 activation and PARP cleavage. In vivo, the intraperitoneal administration of ONCOFID-S in tumor-bearing mice did not induce inflammation, and evidenced an improved therapeutic efficacy compared with CPT-11. In conclusion, SN-38 conjugation to hyaluronan significantly improved the profile of in vivo tolerability and widened the field of application of irinotecan. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Anna Merlo
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Debora Carpanese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paola Zanovello
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy ; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy ; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|