1
|
Gutman T, Tuller T. Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding. PLoS Comput Biol 2024; 20:e1012685. [PMID: 39724131 DOI: 10.1371/journal.pcbi.1012685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients. Among these, three specific single nucleotide polymorphisms-T1236C, T2677G, and T3435C - have been the focus of extensive research efforts, primarily through in vitro cell line models and clinical cohort analyses. However, the findings from these studies have been remarkably contradictory. In this study, we employ a computational, data-driven approach to systematically evaluate the effects of these three variants on principal stages of the gene expression process. Leveraging current knowledge of gene regulatory mechanisms, we elucidate potential mechanisms by which these variants could modulate P-glycoprotein levels and function. Our findings suggest that all three variants significantly change the mRNA folding in their vicinity. This change in mRNA structure is predicted to increase local translation elongation rates, but not to change the protein expression. Nonetheless, the increased translation rate near T3435C is predicted to affect the protein's co-translational folding trajectory in the region of the second ATP binding domain. This potentially impacts P-glycoprotein conformation and function. Our study demonstrates the value of computational approaches in elucidating the functional consequences of genetic variants. This framework provides new insights into the molecular mechanisms of MDR1 variants and their potential impact on cancer prognosis and treatment resistance. Furthermore, we introduce an approach which can be systematically applied to identify mutations potentially affecting mRNA folding in pathology. We demonstrate the utility of this approach on both ClinVar and TCGA and identify hundreds of disease related variants that modify mRNA folding at essential positions.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Polymorphism, Single Nucleotide/genetics
- Neoplasms/genetics
- Neoplasms/metabolism
- Computational Biology
- RNA Folding/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Tal Gutman
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Pravdić Z, Suvajdžić-Vuković N, Virijević M, Mitrović M, Pantić N, Sabljić N, Pavlović Đ, Marjanović I, Bukumirić Z, Vidović A, Jaković L, Pavlović S, Gašić V. Can pharmacogenetics impact the therapeutic effect of cytarabine and anthracyclines in adult acute myeloid leukaemia patients?: A Serbian experience. J Med Biochem 2024; 43:545-555. [PMID: 39139169 PMCID: PMC11318899 DOI: 10.5937/jomb0-47459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 08/15/2024] Open
Abstract
Background Cytarabine-anthracycline-based induction chemotherapy remains the standard of care for remission induction among patients with newly diagnosed acute myeloid leukaemia (AML). There are remarkable differences in therapy response among AML patients. This fact could be partly explained by the patients' genetic variability related to the metabolic paths of cytarabine and anthracyclines. This study aims to evaluate the effect of variants in pharmacogenes SLC29A1, DCK, ABCB1, GSTM1, and GSTT1, as well as laboratory and AML-related parameters on clinical outcomes in adult AML patients. Methods A total of 100 AML patients were included in the study. Pharmacogenetic variants SLC29A1 rs9394992, DCK rs12648166, ABCB1 rs2032582, and GSTM1 and GSTT1 gene deletions were detected by methodology based on PCR, fragment analysis and direct sequencing. The methods of descriptive and analytic statistics were used. Survival analysis was done using the Kaplan-Meier method using the Log-Rank test. Results This is the first study of adult AML pharmacogenetics in the Serbian population. Clinical outcomes in our cohort of AML patients were not impacted by analysed variants in SLC29A1, DCK, ABCB1 and GSTT1, and GSTM1 genes, independently or in combinations. Achievement of complete remission was identified as an independent prognostic indicator of clinical outcome. Conclusions The population-specific genomic profile has to be considered in pharmacogenetics. Since the data on AML pharmacogenetics in European populations is limited, our results contribute to knowledge in this field and strongly indicate that a high-throughput approach must be applied to find particular pharmacogenetic markers of AML in the European population.
Collapse
Affiliation(s)
- Zlatko Pravdić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | | | | | - Mirjana Mitrović
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Nikola Pantić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Nikica Sabljić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Đorđe Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Irena Marjanović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Zoran Bukumirić
- University of Belgrade, Faculty of Medicine, Institute of Medical Statistics and Informatics, Belgrade
| | - Ana Vidović
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Ljubomir Jaković
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Sonja Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Vladimir Gašić
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| |
Collapse
|
3
|
Cerovska E, Salek C, Kundrat D, Sestakova S, Pesek A, Brozinova I, Belickova M, Remesova H. ABC transporters are predictors of treatment failure in acute myeloid leukaemia. Biomed Pharmacother 2024; 170:115930. [PMID: 38039756 DOI: 10.1016/j.biopha.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION To date, no chemoresistance predictors are included in acute myeloid leukaemia (AML) prognostic scoring systems to distinguish responding and refractory AML patients prior to chemotherapy. ABC transporters have been described as altering AML chemosensitivity; however, a relevant study investigating their role at various molecular levels was lacking. METHODS Gene expression, genetic variants, methylation and activity of ABCA2, ABCA5, ABCB1, ABCB6, ABCC1, ABCC3 and ABCG2 were analysed in AML blasts and healthy myeloblasts. Differences between responding and refractory AML in a cohort of 113 patients treated with 3 + 7 induction therapy were explored. RESULTS ABCC3 variant rs2301837 (p = 0.049), ABCG2 variant rs11736552 (p = 0.044), higher ABCA2 (p = 0.021), ABCC1 (p = 0.017), and ABCG2 expression (p = 0.023) and a higher number of concurrently overexpressed transporters (p = 0.002) were predictive of treatment failure by multivariate analysis. Expression of ABCA5 (p = 0.003), ABCB6 (p = 0.001) and ABCC3 (p < 0.0001) increased significantly after chemotherapy. Higher ABCG2 promoter methylation correlated with lower ABCG2 expression (p = 0.0001). ABCC1 was identified as the most active transporter in AML blasts by functional analysis. CONCLUSIONS ABC transporters, especially ABCC1 seem to contribute substantially to AML chemoresistance. A detailed understanding of chemoresistance mechanisms and the clinical implications of chemosensitivity predictors may lead to alternative therapeutic approaches for AML patients with unveiled chemoresistance signatures.
Collapse
Affiliation(s)
- Ela Cerovska
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, Faculty of Science, Albertov 6, 128 00 Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - David Kundrat
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Sarka Sestakova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Adam Pesek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Ivana Brozinova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Hana Remesova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic.
| |
Collapse
|
4
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
5
|
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14040878. [PMID: 35456712 PMCID: PMC9030330 DOI: 10.3390/pharmaceutics14040878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Antineoplastic uptake by blast cells in acute myeloid leukemia (AML) could be influenced by influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps. Genetic variability in SLC and ABC could produce interindividual differences in clinical outcomes. A systematic review was performed to evaluate the influence of SLC and ABC polymorphisms and their combinations on efficacy and safety in AML cohorts. Anthracycline intake was especially influenced by SLCO1B1 polymorphisms, associated with lower hepatic uptake, showing higher survival rates and toxicity in AML studies. The variant alleles of ABCB1 were related to anthracycline intracellular accumulation, increasing complete remission, survival and toxicity. Similar findings have been suggested with ABCC1 and ABCG2 polymorphisms. Polymorphisms of SLC29A1, responsible for cytarabine uptake, demonstrated significant associations with survival and response in Asian populations. Promising results were observed with SLC and ABC combinations regarding anthracycline toxicities. Knowledge of the role of transporter pharmacogenetics could explain the differences observed in drug disposition in the blast. Further studies including novel targeted therapies should be performed to determine the influence of genetic variability to individualize chemotherapy schemes.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
- Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-961-245876
| |
Collapse
|
6
|
Pinto-Merino Á, Labrador J, Zubiaur P, Alcaraz R, Herrero MJ, Montesinos P, Abad-Santos F, Saiz-Rodríguez M. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics 2022; 14:pharmaceutics14030559. [PMID: 35335935 PMCID: PMC8954545 DOI: 10.3390/pharmaceutics14030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by remarkable toxicity and great variability in response to treatment. Plenteous pharmacogenetic studies have already been published for classical therapies, such as cytarabine or anthracyclines, but such studies remain scarce for newer drugs. There is evidence of the relevance of polymorphisms in response to treatment, although most studies have limitations in terms of cohort size or standardization of results. The different responses associated with genetic variability include both increased drug efficacy and toxicity and decreased response or resistance to treatment. A broad pharmacogenetic understanding may be useful in the design of dosing strategies and treatment guidelines. The aim of this study is to perform a review of the available publications and evidence related to the pharmacogenetics of AML, compiling those studies that may be useful in optimizing drug administration.
Collapse
Affiliation(s)
| | - Jorge Labrador
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
- Facultad de Ciencias de la Salud, Universidad Isabel I, 09003 Burgos, Spain
| | - Pablo Zubiaur
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (P.Z.); (F.A.-S.)
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
| | - María José Herrero
- Pharmacogenetics Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Pau Montesinos
- Haematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Francisco Abad-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (P.Z.); (F.A.-S.)
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Department of Health Sciences, University of Burgos, 09001 Burgos, Spain;
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
- Correspondence: ; Tel.: +34-947-281-800 (ext. 36078)
| |
Collapse
|
7
|
Vasconcelos FC, de Souza PS, Hancio T, de Faria FCC, Maia RC. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit Rev Oncol Hematol 2021; 160:103281. [PMID: 33667660 DOI: 10.1016/j.critrevonc.2021.103281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported. Here, we review the main issues about drug transporter proteins in AML clinical scenario, and highlight the clinicopathological significance of MDR phenotype associated with ABCB1 polymorphisms and FLT3 mutation.
Collapse
Affiliation(s)
- Flavia Cunha Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Bioativos, Polo Novo Cavaleiros/IMCT, Campus Professor Aloisio Teixeira (UFRJ/Macaé), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Thaís Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, RJ, Brazil
| | - Fernanda Costas Casal de Faria
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Hlaváč V, Holý P, Souček P. Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450. J Pers Med 2020; 10:jpm10030108. [PMID: 32872162 PMCID: PMC7565825 DOI: 10.3390/jpm10030108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacogenomics is an evolving tool of precision medicine. Recently, due to the introduction of next-generation sequencing and projects generating "Big Data", a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies. Although the evidence needs further substantiation, somatic and copy number variants as well as rare variants and common polymorphisms in these genes could all affect response to cancer therapy. Regulation by long noncoding RNAs has also been shown to play a role. However, in all these areas, more comprehensive studies on larger sets of patients are needed.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267082681; Fax: +420-267311236
| | - Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| |
Collapse
|
9
|
Tan Y, Cao K, Ren G, Qin Z, Zhao D, Li N, Chen X, Xia Y, Lu Y. Effects of the ABCB1 and ABCG2 polymorphisms on the pharmacokinetics of afatinib in healthy Chinese volunteers. Xenobiotica 2019; 50:237-243. [DOI: 10.1080/00498254.2019.1610585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanan Tan
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangna Cao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guanghui Ren
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiying Qin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Bartelink IH, Jones EF, Shahidi‐Latham SK, Lee PRE, Zheng Y, Vicini P, van ‘t Veer L, Wolf D, Iagaru A, Kroetz DL, Prideaux B, Cilliers C, Thurber GM, Wimana Z, Gebhart G. Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle. Clin Pharmacol Ther 2019; 106:148-163. [PMID: 30107040 PMCID: PMC6617978 DOI: 10.1002/cpt.1211] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Precision medicine aims to use patient genomic, epigenomic, specific drug dose, and other data to define disease patterns that may potentially lead to an improved treatment outcome. Personalized dosing regimens based on tumor drug penetration can play a critical role in this approach. State-of-the-art techniques to measure tumor drug penetration focus on systemic exposure, tissue penetration, cellular or molecular engagement, and expression of pharmacological activity. Using in silico methods, this information can be integrated to bridge the gap between the therapeutic regimen and the pharmacological link with clinical outcome. These methodologies are described, and challenges ahead are discussed. Supported by many examples, this review shows how the combination of these techniques provides enhanced patient-specific information on drug accessibility at the tumor tissue level, target binding, and downstream pharmacology. Our vision of how to apply tumor drug penetration measurements offers a roadmap for the clinical implementation of precision dosing.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneSouth San FranciscoCaliforniaUSA
- Department of Clinical Pharmacology and PharmacyAmsterdam UMCVrije Universiteit AmsterdamThe Netherlands
| | - Ella F. Jones
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yanan Zheng
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneSouth San FranciscoCaliforniaUSA
| | - Paolo Vicini
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneCambridgeUK
| | - Laura van ‘t Veer
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Denise Wolf
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging at Stanford Health CareStanfordCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences (BTS)School of PharmacyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Brendan Prideaux
- Rutgers New Jersey Medical SchoolPublic Health Research InstituteRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Cornelius Cilliers
- Departments of Chemical Engineering and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Greg M. Thurber
- Departments of Chemical Engineering and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Zena Wimana
- Institut Jules BordetUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Geraldine Gebhart
- Institut Jules BordetUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
11
|
Chang Q, He ZL, Peng YC, Duan SG, Dai YX, Zhao XH. A meta-analysis of MDR1 polymorphisms rs1128503 and rs1045642 and susceptibility to hepatocellular carcinoma. J Int Med Res 2019; 47:2800-2809. [PMID: 31234681 PMCID: PMC6683882 DOI: 10.1177/0300060519855869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective A relationship between polymorphisms rs1128503 and rs1045642 in the multidrug resistance 1 gene ( MDR1) and susceptibility to hepatocellular carcinoma (HCC) has been reported but is inconclusive. This study was performed to explore the significance of MDR1 polymorphisms rs1128503 and rs1045642 in screening and diagnosis of HCC. Methods Studies of association analyses between MDR1 gene polymorphisms rs1128503 and rs1045642 and HCC were selected from three foreign language databases (PubMed, Cochrane, and Embase) and three Chinese databases (Wanfang, China National Knowledge Infrastructure, and China Knowledge Network) and subjected to meta-analysis. Results We found no significant relationship between the rs1128503 polymorphism and susceptibility to HCC in 4 cohorts and no significant relationship between the rs1045642 polymorphism and susceptibility to HCC in 3 cohorts. Conclusions There was no relationship between polymorphisms rs1128503 or rs1045642 of the MDR1 gene and susceptibility to HCC.
Collapse
Affiliation(s)
- Qing Chang
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| | - Zhong-Lin He
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| | - Yu-Chong Peng
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| | - Shi-Gang Duan
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| | - Yu-Xin Dai
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| | - Xiao-Hui Zhao
- Department of General Surgery, 9th People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
12
|
Hsiao SH, Lusvarghi S, Huang YH, Ambudkar SV, Hsu SC, Wu CP. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett 2019; 445:34-44. [PMID: 30639533 DOI: 10.1016/j.canlet.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/28/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
The occurrence of multidrug resistance (MDR) associated with the overexpression of the ATP-binding cassette (ABC) protein ABCB1 in cancer cells remains a significant obstacle to successful cancer chemotherapy. Therefore, discovering modulators that are capable of inhibiting the drug efflux function or expression of ABCB1 and re-sensitizing multidrug-resistant cancer cells to anticancer agents is of great clinical importance. Regrettably, due to potential adverse events associated with drug-drug interactions and toxicity in patients, researchers have struggled to develop a synthetic inhibitor of ABCB1 that is clinically applicable to improve the effectiveness of chemotherapy. Alternatively, through drug repositioning of approved drugs, we discovered that the FMS-like tyrosine kinase-3 (FLT3) inhibitor midostaurin blocks the drug transport function of ABCB1 and re-sensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic drugs. Our findings were further supported by results demonstrating that midostaurin potentiates drug-induced apoptosis in ABCB1-overexpressing cancer cells and inhibits the ATPase activity of ABCB1. Considering that midostaurin is a clinically approved anticancer agent, our findings revealed an additional action of midostaurin and that patients with multidrug-resistant tumors may benefit from a combination therapy of midostaurin with standard chemotherapy, which should be further investigated.
Collapse
Affiliation(s)
- Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| | - Sheng-Chieh Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
13
|
Salvador-Martín S, García-González X, García MI, Blanco C, García-Alfonso P, Robles L, Grávalos C, Pachón V, Longo F, Martínez V, Sanjurjo-Sáez M, López-Fernández LA. Clinical utility of ABCB1 genotyping for preventing toxicity in treatment with irinotecan. Pharmacol Res 2018; 136:133-139. [PMID: 30213564 DOI: 10.1016/j.phrs.2018.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
Abstract
Preventing severe irinotecan-induced adverse reactions would allow us to offer better treatment and improve patients' quality of life. Transporters, metabolizing enzymes, and genes involved in the folate pathway have been associated with irinotecan-induced toxicity. We analyzed 12 polymorphisms in UGT1A1, ABCB1, ABCG2, ABCC4, ABCC5, and MTHFR in 158 patients with metastatic colorectal cancer treated with irinotecan and studied the association with grade >2 adverse reactions (CTCAE). Among the most frequent ADRs, the SNPs rs1128503, rs2032582, and rs1045642 in ABCB1 and rs1801133 in MTHFR were associated with hematological toxicity and overall toxicity. The SNP rs11568678 in ABCC4 was also associated with overall toxicity. After correction of P values using a false discovery rate, only ABCB1 variants remained statistically significant. Haplotype analysis in ABCB1 showed an 11.3-fold and 4.6-fold increased risk of hematological toxicity (95% CI, 1.459-88.622) and overall toxicity (95% CI, 2.283-9.386), respectively. Consequently, genotyping of the three SNPs in ABCB1 can predict overall toxicity and hematological toxicity with a diagnostic odds ratio of 4.40 and 9.94, respectively. Genotyping of ABCB1 variants can help to prevent severe adverse reactions to irinotecan-based treatments in colorectal cancer.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Xandra García-González
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María I García
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carolina Blanco
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Pilar García-Alfonso
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis Robles
- Hospital Universitario Doce de Octubre, Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Cristina Grávalos
- Hospital Universitario Doce de Octubre, Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Vanessa Pachón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRICYS), CIBERONC, Madrid, Spain
| | - Federico Longo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRICYS), CIBERONC, Madrid, Spain
| | - Virginia Martínez
- Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz, Spain
| | - María Sanjurjo-Sáez
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis A López-Fernández
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish Clinical Research Network (SCReN), Spain.
| |
Collapse
|
14
|
Endo-Tsukude C, Sasaki JI, Saeki S, Iwamoto N, Inaba M, Ushijima S, Kishi H, Fujii S, Semba H, Kashiwabara K, Tsubata Y, Hayashi M, Kai Y, Saito H, Isobe T, Kohrogi H, Hamada A. Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters. Biol Pharm Bull 2018; 41:47-56. [PMID: 29311482 DOI: 10.1248/bpb.b17-00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Determinants of interindividual variability in erlotinib pharmacokinetics (PK) and adverse events remain to be elucidated. This study with 50 Japanese non-small-cell lung cancer patients treated with oral erlotinib at a standard dose of 150 mg aimed to investigate whether genetic polymorphisms affect erlotinib PK and adverse events. Single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP1A1, CYP1A2, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT2B7, GSTM1, and GSTT1) or efflux transporters (ABCB1, and ABCG2) were analyzed as covariates in a population PK model. The ABCB1 1236C>T (rs1128503) polymorphism, not ABCB1*2 haplotype (1236TT-2677TT-3455TT, rs1128503 TT-rs2032582 TT-rs1045642 TT), was a significant covariate for the apparent clearance (CL/F), with the TT genotype showing a 29.4% decrease in CL/F as compared with the CC and the CT genotypes. A marginally higher incidence of adverse events (mainly skin rash) was observed in the TT genotype group; however, patients with high plasma erlotinib exposure did not always experience skin rash. None of the other SNPs affected PK or adverse events. The ABCB1 genotype is a potential predictor for erlotinib adverse events. Erlotinib might be used with careful monitoring of adverse events in patients with ABCB1 polymorphic variants.
Collapse
Affiliation(s)
- Chihiro Endo-Tsukude
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,National Cancer Center Research Institute.,Chugai Pharmaceutical Co., Ltd
| | | | | | | | | | | | | | | | | | | | | | | | - Yuki Kai
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hideyuki Saito
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Kumamoto University Hospital
| | | | - Hirotsugu Kohrogi
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Akinobu Hamada
- Department of Medical Oncology and Translational Research, Graduate School of Pharmaceutical Sciences, Kumamoto University.,National Cancer Center Research Institute
| |
Collapse
|
15
|
Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmgenomics Pers Med 2017; 10:169-181. [PMID: 28546766 PMCID: PMC5438075 DOI: 10.2147/pgpm.s105208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs) that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T) of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
16
|
Varatharajan S, Abraham A, Karathedath S, Ganesan S, Lakshmi KM, Arthur N, Srivastava VM, George B, Srivastava A, Mathews V, Balasubramanian P. ATP-binding casette transporter expression in acute myeloid leukemia: association with in vitro cytotoxicity and prognostic markers. Pharmacogenomics 2017; 18:235-244. [PMID: 28112576 DOI: 10.2217/pgs-2016-0150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Drug resistance and relapse are considered to be the major reasons for treatment failure in acute myeloid leukemia (AML). There is limited data on the role of ABC transporter expression on in vitro sensitivity to cytarabine (Ara-C) and daunorubicin (Dnr) in primary AML cells. PATIENTS & METHODS RNA expression levels of 12 ABC transporters were analyzed by real-time quantitative PCR in 233 de novo adult acute myeloid leukemia patients. Based on cytarabine or Dnr IC50, the samples were categorized as sensitive, intermediate and resistant. Role of candidate ABC transporter RNA expression on in vitro cytotoxicity, treatment outcome post therapy as well as the influence of various prognostic markers on ABC transporter expression were analyzed. RESULTS Expression of ABCC3 and ABCB6 were significantly higher in Dnr-resistant samples when compared with Dnr-sensitive samples. Increased ABCC1 expression was associated with poor disease-free survival in this cohort of patients. CONCLUSION This comprehensive analysis suggests ABCC1, ABCC3, ABCB6 and ABCA5 as probable targets which can be modulated for improving chemotherapeutic responses.
Collapse
Affiliation(s)
| | - Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Sukanya Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | - Nancy Arthur
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
17
|
Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, Martínez-Cuadrón D, Hervás D, Boluda B, García-Robles A, Rodríguez-Veiga R, Martín-Cerezuela M, Cervera J, Sendra L, Sanz J, Miguel A, Lorenzo I, Poveda JL, Sanz MÁ, Aliño SF. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma 2016; 58:1197-1206. [PMID: 27701910 DOI: 10.1080/10428194.2016.1231405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anthracycline uptake could be affected by efflux pumps of the ABC family. The influence of 7 SNPs of ABC genes was evaluated in 225 adult de novo acute myeloid leukemia (AML) patients. After multivariate logistic regression there were no significant differences in complete remission, though induction death was associated to ABCB1 triple variant haplotype (p = .020). The ABCB1 triple variant haplotype was related to higher nephrotoxicity (p = .016), as well as this haplotype and the variant allele of ABCB1 rs1128503, rs2032582 to hepatotoxicity (p = .001; p = .049; p < .001). Furthermore, the variant allele of ABCC1 rs4148350 was related to severe hepatotoxicity (p = .044), and the variant allele of ABCG2 rs2231142 was associated to greater cardiac (p = .004) and lung toxicities (p = .038). Delayed time to neutropenia recovery was observed with ABCB1 rs2032582 variant (p = .047). This study shows the impact of ABC polymorphisms in AML chemotherapy safety. Further prospective studies with larger population are needed to validate these associations.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- a Unidad de Farmacogenética, Instituto Investigación Sanataria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain.,b Servicio de Farmacia, Área del Medicamento. Hospital Universitario y Politécnico La Fe Avda , Valencia , Spain
| | - Pau Montesinos
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - María José Herrero
- a Unidad de Farmacogenética, Instituto Investigación Sanataria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain.,d Departamento Farmacología, Facultad de Medicina , Universidad de Valencia. Avda , Valencia , Spain
| | - Federico Moscardó
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - Virginia Bosó
- a Unidad de Farmacogenética, Instituto Investigación Sanataria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain.,b Servicio de Farmacia, Área del Medicamento. Hospital Universitario y Politécnico La Fe Avda , Valencia , Spain
| | - Luis Rojas
- a Unidad de Farmacogenética, Instituto Investigación Sanataria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain.,e Department of Internal Medicine, Faculty of Medicine , Pontificia Universidad Católica de Chile. Avda , Santiago , Chile
| | - David Martínez-Cuadrón
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - David Hervás
- f Unidad de Bioestadística, Instituto investigación Sanataria La Fe. Avda , Valencia , Spain
| | - Blanca Boluda
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - Ana García-Robles
- b Servicio de Farmacia, Área del Medicamento. Hospital Universitario y Politécnico La Fe Avda , Valencia , Spain
| | - Rebeca Rodríguez-Veiga
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - María Martín-Cerezuela
- b Servicio de Farmacia, Área del Medicamento. Hospital Universitario y Politécnico La Fe Avda , Valencia , Spain
| | - José Cervera
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - Luis Sendra
- d Departamento Farmacología, Facultad de Medicina , Universidad de Valencia. Avda , Valencia , Spain
| | - Jaime Sanz
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - Antonio Miguel
- d Departamento Farmacología, Facultad de Medicina , Universidad de Valencia. Avda , Valencia , Spain
| | - Ignacio Lorenzo
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - José Luis Poveda
- b Servicio de Farmacia, Área del Medicamento. Hospital Universitario y Politécnico La Fe Avda , Valencia , Spain
| | - Miguel Ángel Sanz
- c Servicio de Hematología y Hemoterapia. Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| | - Salvador F Aliño
- a Unidad de Farmacogenética, Instituto Investigación Sanataria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain.,d Departamento Farmacología, Facultad de Medicina , Universidad de Valencia. Avda , Valencia , Spain.,g Unidad de Farmacología Clínica, Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda , Valencia , Spain
| |
Collapse
|
18
|
Megías-Vericat JE, Montesinos P, Herrero MJ, Bosó V, Martínez-Cuadrón D, Poveda JL, Sanz MÁ, Aliño SF. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics 2016; 17:1245-1272. [DOI: 10.2217/pgs-2016-0055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous malignancy that is primarily treated with combinations of cytarabine and anthracyclines. Although this scheme remains effective in most of the patients, variability of outcomes in patients has been partly related with their genetic variability. Several pharmacogenetic studies have analyzed the impact of polymorphisms in genes encoding transporters, metabolizers or molecular targets of chemotherapy agents. A systematic review on all eligible studies was carried out in order to estimate the effect of polymorphisms of anthracyclines and cytarabine pathways on efficacy and toxicity of AML treatment. Other emerging genes recently studied in AML, such as DNA repair genes, genes potentially related to chemotherapy response or AML prognosis, have also been included.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Unidad de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - María José Herrero
- Unidad de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
- Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Avda, Blasco Ibáñez 15, 46010 – Valencia, Spain
| | - Virginia Bosó
- Unidad de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - Miguel Ángel Sanz
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
| | - Salvador F Aliño
- Unidad de Farmacogenética, Instituto Investigación Sanitaria La Fe and Área del Medicamento, Hospital Universitario y Politécnico La Fe Avda, Fernando Abril Martorell 106, 46026 – Valencia, Spain
- Departamento Farmacología, Facultad de Medicina, Universidad de Valencia, Avda, Blasco Ibáñez 15, 46010 – Valencia, Spain
- Unidad de Farmacología Clínica, Área del Medicamento, Hospital Universitario y Politécnico La Fe. Avda. Fernando Abril Martorell 106, 46026 – Valencia, Spain
| |
Collapse
|
19
|
Megías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, Poveda JL, Sanz MA, Aliño SF. Positive impact of ABCB1 polymorphisms in overall survival and complete remission in acute myeloid leukemia: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2015; 16:1-2. [DOI: 10.1038/tpj.2015.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|