1
|
Zheng X, Qin S, Zhong M, Xu Q, Huai C, Qiu X. PPP3R1 Promoter Polymorphism (Allelic Variation) Affects Tacrolimus Treatment Efficacy by Modulating E2F6 Binding Affinity. Biomedicines 2024; 12:2896. [PMID: 39767802 PMCID: PMC11727355 DOI: 10.3390/biomedicines12122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel PPP3R1 promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway. METHODS Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation. Electrophoretic mobility shift assays (EMSA) validated the altered binding of transcription factors. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blots were used to determine the immunosuppressive effect of tacrolimus. RESULTS Assays revealed that rs4519508 C > T markedly enhanced PPP3R1 promoter activity. EMSA assays validated the binding of E2F6 to rs4519508 C (wild-type) and the binding was significantly weaker to the rs4519508 T (mutant-type). The overexpression of E2F6 significantly reduced the transcriptional activity and expression of PPP3R1 when the rs4519508 site presented as major C allele, an effect that was not observed with the rs4519508 T allele. Furthermore, the downregulation of E2F6 raises the level of downstream immune cytokines inhibited by TAC. CONCLUSIONS This study proposed that E2F6 suppresses the expression of PPP3R1, while rs4519508 C > T impairs the binding of E2F6, and thus elevates the level of PPP3R1, so that the inhibition of the downstream immune cytokines by TAC is attenuated. Our findings reported the potential regulatory role of a novel polymorphism, PPP3R1 rs4519508 C > T, which may serve as pharmacodynamic-associated pharmacogenetic biomarker indicating individual response variability of tacrolimus, and thus aid the clinical management of transplant immunology.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Rd, Shanghai 200030, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; (X.Z.)
| |
Collapse
|
2
|
Niu W, Zheng X, Li Z, Wu Z, Zhong M, Qiu X. Donor and recipient polymorphisms of MAPK signaling pathway genes influence post-transplant liver function in Chinese liver transplant patients taking tacrolimus. Gene X 2023; 857:147190. [PMID: 36632909 DOI: 10.1016/j.gene.2023.147190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Tacrolimus (TAC) is an immunosuppressive drug that is widely used for patients who underwent liver transplantation. In addition to inhibiting the action of calcineurin, TAC also exerts its immunosuppressive effects by interfering with mitogen activated protein kinase (MAPK) pathway. In this study, we investigated the impact of both recipient and donor genetic polymorphisms of MAPK kinase kinase (MAP3K) genes on clinical events in Han Chinese liver transplantation recipients taking TAC. Fifty-seven tag SNPs of 11 genes (MEKK1, MEKK2, MEKK4, MLK1, MLK3, ASK1, TAO1, TAO2, Tpl2, TAK1 and ZAK1) in the MAPK pathway were detected by MALDI-TOF MS assay in 175 TAC-treated liver transplant recipients. The associations of SNPs with incidence of acute rejection, TAC-induced acute nephrotoxicity, and post-transplantation liver and kidney function were explored using Kaplan-Meier survival analysis, Cox-proportional hazard model and linear mixed model, respectively. For the sites significantly associated with clinical events, the dual-luciferase reporter gene system was used to perform preliminary function verification. The results showed that (1) Donor-recipient combinational (D-R) MEKK1 rs62355944 and D-R MLK1 rs8006424 genotypes were significant influence factors of post-transplantation γ-glutamyl transpeptidase (GGT) level (P < 0.0001); (2) D-R MLK1 rs8006424 genotypes were found to significantly affect the alkaline phosphatase (ALP) level after transplantation (P < 0.0001). The results of the dual luciferase reporter gene system demonstrated that the luciferase activity of the pGL3-rs8006424A was significantly higher than that of pGL3-rs8006424G (3.47 ± 0.10 vs 2.97 ± 0.08, P = 0.002). Therefore, MEKK1 rs62355944 and MLK1 rs8006424 might serve as biomarkers to predict post-transplant liver function in liver transplant patients.
Collapse
Affiliation(s)
- Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ziran Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuo Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Pharmacodynamic Monitoring of Ciclosporin and Tacrolimus: Insights From Nuclear Factor of Activated T-Cell-Regulated Gene Expression in Healthy Volunteers. Ther Drug Monit 2023; 45:87-94. [PMID: 36191295 DOI: 10.1097/ftd.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although therapeutic drug monitoring of calcineurin inhibitor (CNI) concentrations is performed routinely in clinical practice, an identical concentration may lead to different effects in different patients. Although the quantification of nuclear factor of activated T-cell-regulated gene expression (NFAT-RGE) is a promising method for measuring individual CNI effects, CNI pharmacodynamics are as of yet incompletely understood. METHODS CNI concentrations and NFAT-RGEs were quantified in 24 healthy volunteers receiving either ciclosporin or tacrolimus in 2 clinical trials. NFAT-RGE was measured using quantitative reverse transcription polymerase chain reaction tests of whole-blood samples. Pharmacokinetics and pharmacodynamics were analyzed using compartmental modeling and simulation. In addition, NFAT-RGE data from renal transplant patients were analyzed. RESULTS The average NFAT-RGE during a dose interval was reduced to approximately 50% with ciclosporin, considering circadian changes. The different effect-time course with ciclosporin and tacrolimus could be explained by differences in potency (IC 50 204 ± 41 versus 15.1 ± 3.2 mcg/L, P < 0.001) and pharmacokinetics. Residual NFAT-RGE at the time of maximum concentration (RGE tmax ) of 15% when using ciclosporin and of 30% when using tacrolimus was associated with similar average NFAT-RGEs during a dose interval. Renal transplant patients had similar but slightly stronger effects compared with healthy volunteers. CONCLUSIONS Ciclosporin and tacrolimus led to similar average suppression of NFAT-RGE in a dose interval, despite considerably different RGE tmax . Pharmacodynamic monitoring of average NFAT-RGE should be considered. When using NFAT-RGE at specific time points, the different effect-time courses and circadian changes of NFAT-RGEs should be considered.
Collapse
|
4
|
Xu Q, Dong Y, Niu W, Zheng X, Li R, Zhang M, Wang Z, Qiu X. TLR10 genotypes affect long-term graft function in tacrolimus-treated solid organ transplant recipients. Int Immunopharmacol 2022; 111:109160. [PMID: 35994854 DOI: 10.1016/j.intimp.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
The present study was conducted to investigate the relationship between single nucleotide polymorphisms (SNPs) in TLR10 and the clinical outcomes of renal transplant patients who took tacrolimus (TAC) as an immunosuppressant, and further confirmed the results in liver transplant patients. A total of 172 renal transplant patients and 145 pairs of liver transplant recipients and donors were included. Nineteen SNPs of TLR10 gene were detected by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). The associations of recipient SNPs with TAC-related clinical outcomes were explored in renal transplant recipients. The relationship between recipient and donor SNPs and the clinical outcomes of liver transplant patients were investigated to confirm the results. Three SNPs (rs28393318, rs11466655 and rs11096957) in renal transplant recipients were found to influence the graft function after transplantation (P = 0.00003, 0.001 and 0.000003, respectively). The recipient rs11096957 was also found to affect the TBil, and DBil levels in liver transplant recipients (P = 0.001 and 0.002). In this study, we identified significant association signals from TLR10 polymorphisms with clinical outcomes in TAC-treated transplant patients in a Chinese Han-based sample. We provide some evidence for the effect between rs11096957 in TLR10 gene on the graft functions in both renal and liver transplantation.
Collapse
Affiliation(s)
- Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yue Dong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ming Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
5
|
Zheng X, Huai C, Xu Q, Xu L, Zhang M, Zhong M, Qiu X. FKBP-CaN-NFAT pathway polymorphisms selected by in silico biological function prediction are associated with tacrolimus efficacy in renal transplant patients. Eur J Pharm Sci 2020; 160:105694. [PMID: 33383132 DOI: 10.1016/j.ejps.2020.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
AIM The aim of the present study was to investigate the potential effects of genetic variations in the FKBP-CaN-NFAT pathway on clinical events associated with tacrolimus efficacy in Chinese renal transplant patients. METHODS One hundred and forty Chinese renal transplant patients of Han ethnicity with over five years of follow-up were enrolled in our study. A pool of single nucleotide polymorphisms (SNPs) (1284 SNPs) was extracted from the Ensembl database according to chromosomal regions of the candidate genes. Next, 109 SNPs were screened out from this pool using multiple bioinformatics tools for subsequent genotyping using the MALDI-TOF-MS method. The associations of these candidate SNPs with acute rejection, nephrotoxicity, pneumonia and post-transplant estimated glomerular filtration rate (eGFR) were explored. RESULTS Fourty-four SNPs were found to be associated with tacrolimus-related clinical drug response. Specifically, eight SNPs were associated with the incidence of biopsy-proven acute rejection, four SNPs were associated with the rate of nephrotoxicity, 16 SNPs were correlated with the onset of pneumonia, and 26 SNPs were found to significantly influence post-transplant eGFR trend. An elaborate scoring system was implemented to prioritize the validation of these potentially causal SNPs. In particular, NFATC2 rs150348438 (G>T) performed well during integrative scoring (Ptotal=23.8) and was significantly associated with the occurrence of pneumonia (P = 0.0035, HR=0.91, 95% CI=0.85-0.97) and post-transplant eGFR levels (P = 0.000003). CONCLUSIONS NFATC2 rs150348438, rs6013219, rs1052653, and NFATC1 rs754093, ranking high in scoring, significantly affected the post-transplant eGFR and the incidence of pneumonia, acute rejection, and nephrotoxicity in renal transplant patients taking tacrolimus. Those SNPs may alter the expression and regulation of FKBP-CaN-NFAT pathway by influencing transcription regulation, mature mRNA degradation and RNA splicing, or protein coding. Critical SNPs of high ranking may serve as PD-associated pharmacogenetic biomarkers indicating individual response variability of TAC, and thus aid the clinical management of renal transplant patients.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Cong Huai
- Bio-X Institutes, Shanghai Jiao Tong University and Research Division, 55 Guangyuan West Road, Shanghai, 200030, China
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan hospital, Fudan University, Shanghai, China
| | - Luyang Xu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ming Zhang
- Department of Nephrology, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
6
|
Bonezi V, Genvigir FDV, Salgado PDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differential expression of genes related to calcineurin and mTOR signaling and regulatory miRNAs in peripheral blood from kidney recipients under tacrolimus-based therapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1051. [PMID: 33145270 PMCID: PMC7575939 DOI: 10.21037/atm-20-1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Genetic and epigenetics factors have been implicated in drug response, graft function and rejection in solid organ transplantation. Differential expression of genes involved in calcineurin and mTOR signaling pathway and regulatory miRNAs was analyzed in the peripheral blood of kidney recipient cohort (n=36) under tacrolimus-based therapy. Methods PPP3CA, PPP3CB, MTOR, FKBP1A, FKBP1B and FKBP5 mRNA expression and polymorphisms in PPP3CA and MTOR were analyzed by qPCR. Expression of miRNAs targeting PPP3CA (miR-30a, miR-145), PPP3CB (miR-10b), MTOR (miR-99a, miR-100), and FKBP1A (miR-103a) was measured by qPCR array. Results PPP3CA and MTOR mRNA levels were reduced in the first three months of treatment compared to pre-transplant (P<0.05). PPP3CB, FKBP1A, FKBP1B, and FKBP5 expression was not changed. In the 3rd month of treatment, the expression of miR-99a, which targets MTOR, increased compared to pre-transplant (P<0.05). PPP3CA c.249G>A (GG genotype) and MTOR c.2997C>T (TT genotype) were associated with reduced expression of PPP3CA mRNA and MTOR, respectively. FKBP1B mRNA levels were higher in patients with acute rejection (P=0.026). Conclusions The expression of PPP3CA, MTOR and miR-99a in the peripheral blood of renal recipients is influenced by tacrolimus-based therapy and by PPP3CA and MTOR variants. These molecules can be potential biomarkers for pharmacotherapy monitoring.
Collapse
Affiliation(s)
- Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia de Cássia Salgado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
8
|
Li HY, Zhou T, Lin S, Lin W. Relationship between TGF-β1 + 869 T/C and + 915 G/C gene polymorphism and risk of acute rejection in renal transplantation recipients. BMC MEDICAL GENETICS 2019; 20:113. [PMID: 31238890 PMCID: PMC6593503 DOI: 10.1186/s12881-019-0847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND This meta-analysis was conducted to assess the relationship between the transforming growth factor-beta 1 (TGF-β1) + 869 T/C gene polymorphism, + 915 G/C gene polymorphism, and the susceptibility of acute rejection in the recipients with renal transplantation. METHODS Relevant studies were searched and identified from the Cochrane Library and PubMed, and eligible investigations were recruited and data were calculated by meta-analysis. RESULTS In this study, we found no relationship between either TGF-β1 + 869 T/C or TGF-β1 + 915 G/C gene polymorphism and acute rejection susceptibility in patients with renal transplantation. No association between either gene polymorphism and acute rejection susceptibility in patients with renal transplantation in Caucasian, Asian, or African populations individually was found. CONCLUSION The TGF-β1 + 869 T/C and + 915 G/C gene polymorphisms are not associated with acute rejection susceptibility in recipients with renal transplantation.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Nephrology, Huadu District People’s Hospital of Guangzhou, Huadu Hospital of Southern Medical University, 510800, No 22 Baohua Road, Guangzhou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 China
| |
Collapse
|