Yadegari-Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Role of Endocytosis Pathways in Electropermeablization of MCF7 Cells Using Low Voltage and High Frequency Electrochemotherapy.
CELL JOURNAL 2021;
23:445-450. [PMID:
34455720 PMCID:
PMC8405087 DOI:
10.22074/cellj.2021.7203]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Objective
The cell membrane is a major barrier for delivery of hydrophilic drugs and molecules into the cells. Although
low voltage and high frequency electric fields (LVHF) are proposed to overcome the cell membrane barrier, the
mechanism of membrane permeabilization is unclear. The aim of study is to investigate endocytosis pathways as a
possible mechanism for enhancing uptake of bleomycin by LVHF.
Materials and Methods
In this experimental study, MCF-7 cells were exposed to bleomycin or to electric fields with
various strengths (10-80 V/cm), frequency of 5 kHz, 4000 electric pulse and 100 µs duration in the presence and
absence of three endocytosis inhibitors-chlorpromazine (Cpz), amiloride (Amilo) and genistein (Geni). We determined
the efficiency of these chemotherapeutic agents in each group.
Results
LVHF, depending on the intensity, induced different endocytosis pathways. Electric field strengths of 10 and
20 V/cm stimulated the macropinocytosis route. Clathrin-mediated endocytosis was observed at electric field intensities
of 10, 30, 60 and 70 V/cm, whereas induction of caveolae-mediated endocytosis was observed only at the lowest
electric field intensity (10 V/cm).
Conclusion
The results of this study imply that LVHF can induce different endocytosis pathways in MCF-7 cells, which
leads to an increase in bleomycin uptake.
Collapse