1
|
Suzuki Y, Arakida Y, Sakai H, Enoki Y, Matsumoto K, Taguchi K. Elucidating the binding properties of methemoglobin in red blood cell to cyanide, hydrosulfide, and azide ions using artificial red blood cell. Toxicol Appl Pharmacol 2023; 481:116752. [PMID: 37956930 DOI: 10.1016/j.taap.2023.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Methemoglobin (metHb), the oxidized form of hemoglobin, lacks the ability of reversible oxygen binding; however, it has a high binding affinity to toxic substances such as cyanide, hydrosulfide, and azide. This innate property of metHb offers the clinical option to treat patients poisoned with these toxins, by oxidizing the endogenous hemoglobin in the red blood cells (RBCs). The binding properties of naked metHb (isolated from RBC) with these toxins has been studied; however, the binding behaviors of metHb under the intracellular conditions of RBC are unclear because of the difficulty in detecting metHb status changes in RBC. This study aimed to elucidate the binding properties of metHb in RBC under physiological and poisoned conditions using artificial RBC, which was hemoglobin encapsulated in a liposome. The mimic-circumstances of metHb in RBC (metHb-V) was prepared by oxidizing the hemoglobin in artificial RBC. Spectroscopic analysis indicated that the metHb in metHb-V exhibited a binding behavior different from that of naked metHb, depending on the toxic substance: When the pH decreased, (i) the cyanide binding affinity of metHb-V remained unchanged, but that of naked metHb decreased (ii) the hydrosulfide binding affinity was increased in metHb-V but was decreased in naked metHb. (iii) Azide binding was increased in metHb-V, which was similar to that in naked metHb, irrespective of the pH change. Thus, the binding behavior of intracellular metHb in the RBC with cyanide, hydrosulfide, and azide under physiological and pathological conditions were partly elucidated using the oxidized artificial RBC.
Collapse
Affiliation(s)
- Yuto Suzuki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yo Arakida
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8521, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
2
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
3
|
Petelska AD, Szeremeta M, Kotyńska J, Niemcunowicz-Janica A. Experimental and Theoretical Approaches to Describing Interactions in Natural Cell Membranes Occurring as a Result of Fatal Alcohol Poisoning. MEMBRANES 2021; 11:membranes11030189. [PMID: 33803418 PMCID: PMC7998942 DOI: 10.3390/membranes11030189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022]
Abstract
We propose herein a theoretical model describing the effect of fatal ethanol poisoning on the equilibria between cell membranes and the surrounding ions. Using this model, we determined the parameters characterizing the interaction between the electrolyte solution’s ions and the functional groups on the blood cells’ surface. Via the application of mathematical equations, we calculated the total surface concentrations of the acidic and basic groups, cA and cB, and their association constants with solution ions, KAH and KBOH. Using the determined parameters and mathematical equations’ values, we calculated the theoretical surface charge density values. We verified the proposed model by comparing these values with experimental data, which were selected based on measurements of the electrophoretic mobility of erythrocyte and thrombocyte membranes. Compatibility of the experimental and theoretical surface charge density values was observed in the range of pH 2–8, while deviations were observed at higher pH values.
Collapse
Affiliation(s)
- Aneta D. Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
- Correspondence:
| | - Michał Szeremeta
- Department of Forensic Medicine, Medical University of Bialystok, Waszyngtona St. 13, 15-230 Bialystok, Poland; (M.S.); (A.N.-J.)
| | - Joanna Kotyńska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Anna Niemcunowicz-Janica
- Department of Forensic Medicine, Medical University of Bialystok, Waszyngtona St. 13, 15-230 Bialystok, Poland; (M.S.); (A.N.-J.)
| |
Collapse
|
4
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
5
|
Lisbona CF, Hamnett HJ. Epidemiological Study of Carbon Monoxide Deaths in Scotland 2007-2016,. J Forensic Sci 2018; 63:1776-1782. [DOI: 10.1111/1556-4029.13790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia Forés Lisbona
- Forensic Medicine & Science; School of Medicine, Dentistry & Nursing; University of Glasgow; University Place, Glasgow G12 8QQ U.K
| | - Hilary J. Hamnett
- Forensic Medicine & Science; School of Medicine, Dentistry & Nursing; University of Glasgow; University Place, Glasgow G12 8QQ U.K
| |
Collapse
|
6
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
7
|
Petelska AD, Kotyńska J, Naumowicz M, Figaszewski ZA. Equilibria Between Cell Membranes and Electrolyte Solution: Effect of Fatal Accidental Hypothermia. J Membr Biol 2016; 249:375-80. [PMID: 26843064 PMCID: PMC4875062 DOI: 10.1007/s00232-016-9875-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/22/2016] [Indexed: 12/01/2022]
Abstract
Equilibria between the membranes of erythrocytes as well as thrombocytes and solution ions in fatal accidental hypothermia were analyzed using a theoretical four-equilibria model. The model was developed to determinate parameters characterizing cell membrane—surrounding ion interactions: the total surface concentrations of both acidic and basic groups CA, CB, and association constants KAH, KBOH. Knowledge of these parameters was necessary to calculate the theoretical values of surface charge density. The model was validated by curve-fitting the experimental data points to simulated data generated by the model. The experimental and theoretical surface charge density values agree at pH 2–8, at higher pH the deviation was observed.
Collapse
Affiliation(s)
- Aneta D Petelska
- Institute of Chemistry, University in Bialystok, K. Ciolkowskiego 1K, 15-245, Białystok, Poland.
| | - Joanna Kotyńska
- Institute of Chemistry, University in Bialystok, K. Ciolkowskiego 1K, 15-245, Białystok, Poland
| | - Monika Naumowicz
- Institute of Chemistry, University in Bialystok, K. Ciolkowskiego 1K, 15-245, Białystok, Poland
| | - Zbigniew A Figaszewski
- Institute of Chemistry, University in Bialystok, K. Ciolkowskiego 1K, 15-245, Białystok, Poland
| |
Collapse
|
8
|
Changes in Surface Charge Density of Blood Cells in Fatal Accidental Hypothermia. J Membr Biol 2015; 248:1175-80. [PMID: 26364031 PMCID: PMC4611003 DOI: 10.1007/s00232-015-9838-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/04/2015] [Indexed: 10/28/2022]
Abstract
The objective of this research was to evaluate postmortem changes concerning electric charge of human erythrocytes and thrombocytes in fatal accidental hypothermia. The surface charge density values were determined on the basis of the electrophoretic mobility measurements of the cells conducted at various pH values of electrolyte solution. The surface charge of erythrocyte membranes after fatal accidental hypothermia increased compared to the control group within whole range of experimental pH values. Moreover, a slight shift of the isoelectric point of erythrocyte membranes towards high pH values was observed. The surface charge of thrombocyte membranes in fatal accidental hypothermia decreased at low pH compared to the control group. However, at pH range 4-9, the values increased compared to the control group. The isoelectric point of thrombocyte membranes after fatal accidental hypothermia was slightly shifted towards low pH values compared to the control group. The observed changes are probably connected with the partial destruction and functional changes of the blood cell structure.
Collapse
|
9
|
Gasomediators (·NO, CO, and H2S) and their role in hemostasis and thrombosis. Clin Chim Acta 2015; 445:115-21. [DOI: 10.1016/j.cca.2015.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
|
10
|
Petelska AD, Kotyńska J, Figaszewski ZA. The effect of fatal carbon monoxide poisoning on the equilibria between cell membranes and the electrolyte solution. J Membr Biol 2015; 248:157-61. [PMID: 25416423 PMCID: PMC4300427 DOI: 10.1007/s00232-014-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
The effect of fatal carbon monoxide poisoning on equilibria between cell membranes and surrounding ions was described using a theoretical four-equilibria model. The model was developed to obtain parameters characterizing the interactions between solution ions and erythrocyte or thrombocyte membrane surface. The parameters are the total surface concentrations of both acidic and basic groups C A, C B and their association constants with solution ions K AH, K BOH. These parameters were used to calculate the theoretical values of surface charge density. The model was validated by comparison of these values to experimental data, which were determined from the electrophoretic mobility measurements of the blood cells. The experimental and theoretical surface charge density values agree at pH 2-8, and at higher pH, the deviation was observed.
Collapse
Affiliation(s)
- Aneta D Petelska
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Białystok, Poland,
| | | | | |
Collapse
|