1
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
2
|
|
3
|
Perry TN, Souabni H, Rapisarda C, Fronzes R, Giusti F, Popot JL, Zoonens M, Gubellini F. BAmSA: Visualising transmembrane regions in protein complexes using biotinylated amphipols and electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:466-477. [DOI: 10.1016/j.bbamem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
|
4
|
Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol 2018; 25:416-424. [PMID: 29728654 PMCID: PMC5942590 DOI: 10.1038/s41594-018-0060-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Viral fusogens merge viral and cell membranes during cell penetration. Their ectodomains drive fusion by undergoing large-scale refolding, but little is known about the functionally important regions located within or near the membrane. Here, we report the crystal structure of the full-length glycoprotein B, the fusogen from Herpes Simplex Virus, complemented by electron spin resonance measurements. The membrane-proximal (MPR), transmembrane (TMD), and cytoplasmic (CTD) domains form a uniquely folded trimeric pedestal beneath the ectodomain, which balances dynamic flexibility with extensive, stabilizing membrane interactions. Hyperfusogenic mutations within the CTD destabilize it, targeting trimeric interfaces, structural motifs, and membrane-interacting elements. Thus, we propose that the CTD trimer observed in the structure stabilizes gB in its prefusion state despite being appended to the postfusion ectodomain. Our data suggest a model for how this dynamic, membrane-dependent “clamp” controls the fusogenic refolding of gB.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
6
|
Xiong L, Li H, Jiang LN, Ge JM, Yang WC, Zhu XL, Yang GF. Structure-Based Discovery of Potential Fungicides as Succinate Ubiquinone Oxidoreductase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1021-1029. [PMID: 28110534 DOI: 10.1021/acs.jafc.6b05134] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A series of diphenyl ether-containing pyrazole-carboxamide derivatives was designed and synthesized as new succinate ubiquinone oxidoreductase (SQR) inhibitors. This highly potent molecular scaffold was developed from a moderately activie hit 3, obtained from our previous pharmacophore-linked fragment virtual screening (PFVS) method. The results of greenhouse tests indicated that some analogues showed good SQR inhibitory activity, with promising fungicidal activity against Rhizoctonia solani and Sphaerotheca fuliginea at a dosage of 200 mg/L. Most surprisingly, compound 62 showed the highest SQR inhibitory activity with a Ki value of 0.081 μM, about 4-fold more potent than penthiopyrad (Ki = 0.307 μM). In addition, compounds 43 and 62 displayed excellent fungicidal activity even at a dosage as low as 6.25 mg/L, which was superior to thifluzamide. Moreover, compound 62 exhibited excellent protection effect against R. solani and provided about 81.2% protective control efficancy after 21 days with two sprayings. The present work indicated that these two compounds could be used as potential agricultural fungicides targeting SQR.
Collapse
Affiliation(s)
- Li Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Hua Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Li-Na Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Jing-Ming Ge
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Xiao Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, People's Republic of China
| |
Collapse
|
7
|
Giusti F, Kessler P, Hansen RW, Della Pia EA, Le Bon C, Mourier G, Popot JL, Martinez KL, Zoonens M. Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins. Biomacromolecules 2015; 16:3751-61. [DOI: 10.1021/acs.biomac.5b01010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fabrice Giusti
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Pascal Kessler
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Randi Westh Hansen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Eduardo A. Della Pia
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Christel Le Bon
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Gilles Mourier
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Jean-Luc Popot
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Karen L. Martinez
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Manuela Zoonens
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| |
Collapse
|
8
|
Loll PJ. Membrane proteins, detergents and crystals: what is the state of the art? ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1576-83. [PMID: 25484203 DOI: 10.1107/s2053230x14025035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
At the time when the first membrane-protein crystal structure was determined, crystallization of these molecules was widely perceived as extremely arduous. Today, that perception has changed drastically, and the process is regarded as routine (or nearly so). On the occasion of the International Year of Crystallography 2014, this review presents a snapshot of the current state of the art, with an emphasis on the role of detergents in this process. A survey of membrane-protein crystal structures published since 2012 reveals that the direct crystallization of protein-detergent complexes remains the dominant methodology; in addition, lipidic mesophases have proven immensely useful, particularly in specific niches, and bicelles, while perhaps undervalued, have provided important contributions as well. Evolving trends include the addition of lipids to protein-detergent complexes and the gradual incorporation of new detergents into the standard repertoire. Stability has emerged as a critical parameter controlling how a membrane protein behaves in the presence of detergent, and efforts to enhance stability are discussed. Finally, although discovery-based screening approaches continue to dwarf mechanistic efforts to unravel crystallization, recent technical advances offer hope that future experiments might incorporate the rational manipulation of crystallization behaviors.
Collapse
Affiliation(s)
- Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
9
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
10
|
Sverzhinsky A, Qian S, Yang L, Allaire M, Moraes I, Ma D, Chung JW, Zoonens M, Popot JL, Coulton JW. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membr Biol 2014; 247:1005-18. [DOI: 10.1007/s00232-014-9678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
|
11
|
Le Bon C, Popot JL, Giusti F. Labeling and functionalizing amphipols for biological applications. J Membr Biol 2014; 247:797-814. [PMID: 24696186 PMCID: PMC4185061 DOI: 10.1007/s00232-014-9655-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022]
Abstract
Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.
Collapse
Affiliation(s)
- Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), CNRS/Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | |
Collapse
|
12
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
13
|
High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase. J Membr Biol 2014; 247:997-1004. [DOI: 10.1007/s00232-014-9700-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
14
|
Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study. J Membr Biol 2014; 247:897-908. [DOI: 10.1007/s00232-014-9725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
|
15
|
Perlmutter JD, Popot JL, Sachs JN. Molecular Dynamics Simulations of a Membrane Protein/Amphipol Complex. J Membr Biol 2014; 247:883-95. [DOI: 10.1007/s00232-014-9690-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
|
16
|
Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. J Membr Biol 2014; 247:815-26. [DOI: 10.1007/s00232-014-9663-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
17
|
Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio-Lepiniec M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P. Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J Membr Biol 2014; 247:925-40. [PMID: 25086771 DOI: 10.1007/s00232-014-9707-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.
Collapse
Affiliation(s)
- Yann Ferrandez
- Laboratoire de Modélisation et Ingénierie des Protéines, IBBMC UMR 8619, CNRS/Université Paris Sud, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Opačić M, Giusti F, Popot JL, Broos J. Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35. J Membr Biol 2014; 247:1019-30. [PMID: 24952466 DOI: 10.1007/s00232-014-9691-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EII(mtl), a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EII(mtl), some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EII(mtl) soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EII(mtl) mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EII(mtl) using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.
Collapse
Affiliation(s)
- Milena Opačić
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique, CNRS FRC 550, 13 rue Pierre-et-Marie Curie, 75005, Paris, France
| | | | | | | |
Collapse
|
19
|
Elter S, Raschle T, Arens S, Viegas A, Gelev V, Etzkorn M, Wagner G. The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol 2014; 247:957-64. [PMID: 24858950 DOI: 10.1007/s00232-014-9669-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.
Collapse
Affiliation(s)
- Shantha Elter
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|