1
|
Xing X, Gong Z, Chen C, Lin Y, Liu P, Xiao T, Yu H, Li Y, Lin Y, Tan G, Ning C, Wu Z, Wang L, Zhou L. Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing. Biomaterials 2024; 317:123059. [PMID: 39731843 DOI: 10.1016/j.biomaterials.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS). The hydrogel (denoted as RPO) was facilely formed by the cross-linking of rutin-functionalized gelatin, poly(vinyl alcohol), and oxidized starch based on the dynamic schiff base and boronate ester bond. Specifically, rutin is conjugated in the RPO hydrogel via a ROS linker and is released as the linker is cleaved by active ROS. In vitro studies demonstrate that RPO hydrogel effectively mitigates oxidative stress, alleviates mitochondrial dysfunction, and limits the overactivation of NLRP3 inflammasome in bone marrow derived macrophages, thereby promoting osteogenic differentiation of bone marrow mesenchymal stem cells. In a diabetic rat fracture model, RPO hydrogel significantly accelerates bone repair by modulating the inflammatory microenvironment. Our results demonstrate that local, on-demand NLRP3 inhibition for the treatment of diabetic fracture is achievable by using an injectable bioresponsive adhesive RPO hydrogel.
Collapse
Affiliation(s)
- Xudan Xing
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zunlei Gong
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Chuke Chen
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yeyin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Peiyi Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hui Yu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yuanxin Li
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yucong Lin
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, PR China
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China.
| |
Collapse
|
2
|
Versini R, Baaden M, Cavellini L, Cohen MM, Taly A, Fuchs PFJ. Lys716 in the transmembrane domain of yeast mitofusin Fzo1 modulates anchoring and fusion. Structure 2024; 32:1997-2012.e7. [PMID: 39299234 DOI: 10.1016/j.str.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.
Collapse
Affiliation(s)
- Raphaëlle Versini
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France; Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Laetitia Cavellini
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Mickaël M Cohen
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France.
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France; Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
3
|
Lei R, Chen S, Li W. Advances in the study of the correlation between insulin resistance and infertility. Front Endocrinol (Lausanne) 2024; 15:1288326. [PMID: 38348417 PMCID: PMC10860338 DOI: 10.3389/fendo.2024.1288326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
This is a narrative review of the progress of research on the correlation between insulin resistance and infertility. Insulin resistance (IR) is not only involved in the development of various metabolic diseases, but also affects female reproductive function, and to some extent is closely related to female infertility. IR may increase the risk of female infertility by activating oxidative stress, interfering with energy metabolism, affecting oocyte development, embryo quality and endometrial tolerance, affecting hormone secretion and embryo implantation, as well as affecting assisted conception outcomes in infertile populations and reducing the success rate of assisted reproductive technology treatment in infertile populations. In addition, IR is closely associated with spontaneous abortion, gestational diabetes and other adverse pregnancies, and if not corrected in time, may increase the risk of obesity and metabolic diseases in the offspring in the long term. This article provides a review of the relationship between IR and infertility to provide new ideas for the treatment of infertility.
Collapse
Affiliation(s)
| | | | - Weihong Li
- Reproductive Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Konar S, Arif H, Allolio C. Mitochondrial membrane model: Lipids, elastic properties, and the changing curvature of cardiolipin. Biophys J 2023; 122:4274-4287. [PMID: 37798880 PMCID: PMC10645570 DOI: 10.1016/j.bpj.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/12/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
Mammalian and Drosophila melanogaster model mitochondrial membrane compositions are constructed from experimental data. Simplified compositions for inner and outer mitochondrial membranes are provided, including an asymmetric inner mitochondrial membrane. We performed atomistic molecular dynamics simulations of these membranes and computed their material properties. When comparing these properties to those obtained by extrapolation from their constituting lipids, we find good overall agreement. Finally, we analyzed the curvature effect of cardiolipin, considering ion concentration effects, oxidation, and pH. We draw the conclusion that cardiolipin-negative curvature is most likely due to counterion effects, such as cation adsorption, in particular of H3O+. This oft-neglected effect might account for the puzzling behavior of this lipid.
Collapse
Affiliation(s)
- Sukanya Konar
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Hina Arif
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic
| | - Christoph Allolio
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Buntenbroich I, Anton V, Perez-Hernandez D, Simões T, Gaedke F, Schauss A, Dittmar G, Riemer J, Escobar-Henriques M. Docking and stability defects in mitofusin highlight the proteasome as a potential therapeutic target. iScience 2023; 26:107014. [PMID: 37416455 PMCID: PMC10320088 DOI: 10.1016/j.isci.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Defects in mitochondrial fusion are at the base of many diseases. Mitofusins power membrane-remodeling events via self-interaction and GTP hydrolysis. However, how exactly mitofusins mediate fusion of the outer membrane is still unclear. Structural studies enable tailored design of mitofusin variants, providing valuable tools to dissect this stepwise process. Here, we found that the two cysteines conserved between yeast and mammals are required for mitochondrial fusion, revealing two novel steps of the fusion cycle. C381 is dominantly required for the formation of the trans-tethering complex, before GTP hydrolysis. C805 allows stabilizing the Fzo1 protein and the trans-tethering complex, just prior to membrane fusion. Moreover, proteasomal inhibition rescued Fzo1 C805S levels and membrane fusion, suggesting a possible application for clinically approved drugs. Together, our study provides insights into how assembly or stability defects in mitofusins might cause mitofusin-associated diseases and uncovers potential therapeutic intervention by proteasomal inhibition.
Collapse
Affiliation(s)
- Ira Buntenbroich
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Vincent Anton
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Daniel Perez-Hernandez
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Tânia Simões
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Institute for Biochemistry, University of Cologne, Cologne 50931, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
6
|
Ozeir M, Cohen MM. From dynamin related proteins structures and oligomers to membrane fusion mediated by mitofusins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148913. [PMID: 36057374 DOI: 10.1016/j.bbabio.2022.148913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.
Collapse
Affiliation(s)
- Mohammad Ozeir
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
7
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
8
|
Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria–Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front Cell Dev Biol 2022; 10:848214. [PMID: 35281107 PMCID: PMC8914053 DOI: 10.3389/fcell.2022.848214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double membrane organelles within eukaryotic cells, which act as cellular power houses, depending on the continuous availability of oxygen. Nevertheless, under hypoxia, metabolic disorders disturb the steady-state of mitochondrial network, which leads to dysfunction of mitochondria, producing a large amount of reactive oxygen species that cause further damage to cells. Compelling evidence suggests that the dysfunction of mitochondria under hypoxia is linked to a wide spectrum of human diseases, including obstructive sleep apnea, diabetes, cancer and cardiovascular disorders. The functional dichotomy of mitochondria instructs the necessity of a quality-control mechanism to ensure a requisite number of functional mitochondria that are present to fit cell needs. Mitochondrial dynamics plays a central role in monitoring the condition of mitochondrial quality. The fission–fusion cycle is regulated to attain a dynamic equilibrium under normal conditions, however, it is disrupted under hypoxia, resulting in mitochondrial fission and selective removal of impaired mitochondria by mitophagy. Current researches suggest that the molecular machinery underlying these well-orchestrated processes are coordinated at mitochondria–endoplasmic reticulum contact sites. Here, we establish a holistic understanding of how mitochondrial dynamics and mitophagy are regulated at mitochondria–endoplasmic reticulum contact sites under hypoxia.
Collapse
|
9
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
10
|
Escobar-Henriques M, Anton V. Mitochondrial Surveillance by Cdc48/p97: MAD vs. Membrane Fusion. Int J Mol Sci 2020; 21:E6841. [PMID: 32961852 PMCID: PMC7555132 DOI: 10.3390/ijms21186841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cdc48/p97 is a ring-shaped, ATP-driven hexameric motor, essential for cellular viability. It specifically unfolds and extracts ubiquitylated proteins from membranes or protein complexes, mostly targeting them for proteolytic degradation by the proteasome. Cdc48/p97 is involved in a multitude of cellular processes, reaching from cell cycle regulation to signal transduction, also participating in growth or death decisions. The role of Cdc48/p97 in endoplasmic reticulum-associated degradation (ERAD), where it extracts proteins targeted for degradation from the ER membrane, has been extensively described. Here, we present the roles of Cdc48/p97 in mitochondrial regulation. We discuss mitochondrial quality control surveillance by Cdc48/p97 in mitochondrial-associated degradation (MAD), highlighting the potential pathologic significance thereof. Furthermore, we present the current knowledge of how Cdc48/p97 regulates mitofusin activity in outer membrane fusion and how this may impact on neurodegeneration.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany;
| | | |
Collapse
|
11
|
Special Issue: Membrane and Receptor Dynamics. J Membr Biol 2020; 252:207-211. [PMID: 31583440 DOI: 10.1007/s00232-019-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Zeng X, Huang Q, Long SL, Zhong Q, Mo Z. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. DNA Cell Biol 2020; 39:1401-1409. [PMID: 32077751 DOI: 10.1089/dna.2019.5172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common female reproductive metabolisms. It is an endocrine disease that affects reproductive women and often exhibits with hyperandrogenemia, insulin resistance (IR), low inflammation, and an increased risk of type 2 diabetes mellitus, metabolic syndrome, and cardiovascular events such as hypertension and dyslipidemia in patients. However, the molecular mechanism of PCOS is still unclear. Recently, an increasing number of studies have shown that the oxidative stress induced by mitochondrial dysfunction has negative effects on IR, lipid metabolism, and follicular development, suggesting that mitochondrial dysfunction plays an essential role in the development of PCOS. Abnormal mitochondrial DNA copy number in patients with PCOS, and mitochondrial gene mutations, has been the focus of research in recent years, and functional mitochondrial diseases have been gradually accepted as a related factor in PCOS. This review is intended to summarize and discuss previous and recent studies and findings on the connections between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Huang
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuang Lian Long
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiaoqing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Basic Medical Sciences, Guilin Medical University, Guangxi, Guilin, China
| |
Collapse
|