1
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
2
|
Bustos D, Galarza C, Ordoñez W, Brauchi S, Benso B. Cost-Effective Pipeline for a Rational Design and Selection of Capsaicin Analogues Targeting TRPV1 Channels. ACS OMEGA 2023; 8:11736-11749. [PMID: 37033853 PMCID: PMC10077575 DOI: 10.1021/acsomega.2c05672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/25/2022] [Indexed: 06/19/2023]
Abstract
Transient receptor potential (TRP) channels constitute a large group of membrane receptors associated with sensory pathways in vertebrates. One of the most studied is TRPV1, a polymodal receptor tuned for detecting heat and pungent compounds. Specific inhibition of the nociceptive transduction at the peripheral nerve represents a convenient approach to pain relief. While acting as a chemoreceptor, TRPV1 shows high sensitivity and selectivity for capsaicin. In contrast to the drugs available on the market that target the inflammatory system, TRPV1 antagonists act as negative modulators of nociceptive transduction. Therefore, the development of compounds modulating TRPV1 activity has expanded dramatically over time. Experimental data suggest that most agonist and antagonist drugs interact at or near capsaicin's binding site. In particular, the properties of capsaicin's head play an essential role in modulating potency and affinity. Here, we explored a cost-efficient pipeline to predict the effects of introducing chemical modifications into capsaicin's head region. An extensive set of molecules was selected by first considering the geometrical properties of capsaicin's binding site and then molecular docking. Finally, the novel ligands were ranked by combining molecular and pharmacokinetic predictions.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro
de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría
de Investigación y Postgrado, Universidad
Católica del Maule, Talca 3460000, Chile
- Laboratorio
de Bioinformática y Química Computacional, Departamento
de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Christian Galarza
- Facultad
de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090703, Ecuador
| | - Wilson Ordoñez
- Facultad
de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090703, Ecuador
| | - Sebastian Brauchi
- Department
of Physiology, Faculty of Medicine, Universidad
Austral de Chile, Valdivia 5090000, Chile
- Millennium
Nucleus of Ion Channels Associated Diseases (MiNICAD), 8330024, Chile
| | - Bruna Benso
- Millennium
Nucleus of Ion Channels Associated Diseases (MiNICAD), 8330024, Chile
- School of
Dentistry, Faculty of Medicine, Pontificia
Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
3
|
Cabezas-Bratesco D, Mcgee FA, Colenso CK, Zavala K, Granata D, Carnevale V, Opazo JC, Brauchi SE. Sequence and structural conservation reveal fingerprint residues in TRP channels. eLife 2022; 11:73645. [PMID: 35686986 PMCID: PMC9242649 DOI: 10.7554/elife.73645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.
Collapse
Affiliation(s)
| | - Francisco A Mcgee
- Department of Biology, Temple University, Philadelphia, United States
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniele Granata
- Department of Biology, Temple University, Philadelphia, United States
| | | | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
4
|
Suo Y, Lee SY. Sample preparation of the human TRPA1 ion channel for cryo-EM studies. Methods Enzymol 2021; 653:75-87. [PMID: 34099182 DOI: 10.1016/bs.mie.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a member of the TRP channel family that is involved in sensing noxious stimuli that elicit pain and inflammation. Because of its critical physiological role and therapeutic importance, great efforts have been made to understand the structure and mechanism of TRPA1. Several human TRPA1 structures have been reported using single particle cryo-electron microscopy (cryo-EM) over the last 6 years. Here, we present a protocol for the heterologous expression, large-scale purification, and nanodisc reconstitution of the human TRPA1 channel for cryo-EM and biochemical studies.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
5
|
Zubcevic L. Temperature‐sensitive transient receptor potential vanilloid channels: structural insights into ligand‐dependent activation. Br J Pharmacol 2020; 179:3542-3559. [DOI: 10.1111/bph.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry and Molecular Biology The University of Kansas School of Medicine Kansas City KS USA
| |
Collapse
|