1
|
Rozentsvet OA, Bogdanova ES, Nurminsky VN, Nesterov VN, Chernyshov MY. Detergent-Resistant Membranes in Chloroplasts and Mitochondria of the Halophyte Salicornia perennans under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1265. [PMID: 36986953 PMCID: PMC10058330 DOI: 10.3390/plants12061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Halophytes represent important models for studying the key mechanisms of salt tolerance. One approach to the development of new knowledge of salt tolerance is to study the properties of detergent-resistant membranes (DRMs). In this work, the lipid profiles of DRMs of chloroplasts and mitochondria of euhalophyte Salicornia perennans Willd, before and after their exposure to shock concentrations of NaCl, have been investigated. We found that DRMs of chloroplasts are enriched in cerebrosides (CERs) and that sterols (STs) dominate the mass of mitochondrial DRMs. Also, it has been proven that (i) the impact of salinity provokes obvious growth in the content of CERs in DRMs of chloroplasts; (ii) the content of STs in DRMs of chloroplasts does not change under the influence of NaCl; (iii) salinity also causes some elevation in the content of monounsaturated and saturated fatty acids (FAs). Considering the fact that DRMs represent integral parts of both chloroplast and mitochondrial membranes, the authors have come to the conclusion that the cells of euhalophyte S. perennans, under the impact of salinity, presumes the choice (by the cell) of some specific composition of lipids and FAs in the membrane. This may be considered as a specific protection reaction of the plant cell against salinity.
Collapse
Affiliation(s)
- Olga A. Rozentsvet
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Elena S. Bogdanova
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Vadim N. Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., 664033 Irkutsk, Russia
| | - Viktor N. Nesterov
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Michael Yu. Chernyshov
- Presidium of Irkutsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 134, Lermontov St., 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Kordyum EL, Artemenko OA, Hasenstein KH. Lipid Rafts and Plant Gravisensitivity. Life (Basel) 2022; 12:1809. [PMID: 36362962 PMCID: PMC9695138 DOI: 10.3390/life12111809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/24/2023] Open
Abstract
The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications. The composition, especially the sterol-dependent recruitment of specific proteins affects endo- and exo-membrane domains as well as plasmodesmata. The enhanced saturated fatty acid content in lipid rafts after clinorotation suggests increased rigidity and reduced membrane permeability as a primary response to abiotic and mechanical stress. These results can also be obtained with lipid-sensitive stains. The linkage of the CM to the cytoskeleton via rafts is part of the complex interactions between lipid microdomains, mechanosensitive ion channels, and the organization of the cytoskeleton. These intricately linked structures and functions provide multiple future research directions to elucidate the role of lipid rafts in physiological processes.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Olga A. Artemenko
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| |
Collapse
|
3
|
Cui S, Hu K, Qian Z, Mao B, Zhang Q, Zhao J, Tang X, Zhang H. Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms 2022; 10:microorganisms10101985. [PMID: 36296261 PMCID: PMC9608830 DOI: 10.3390/microorganisms10101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cell membrane of Lactiplantibacillus plantarum is a key structure for cell survival. In this study, we aimed to improve the lyophilization resistance of L. plantarum by regulating the cell membrane structure. Unsaturated fatty acids or cell membrane-regulating substances were added during culturing to determine their effect on the composition of cell membrane fatty acids and the survival rate of the cells after freeze-drying. The results showed that Tween 80, β-carotene and melatonin increased the lyophilization survival rate of L. plantarum by 9.44, 14.53, and 18.34%, respectively. After adding a lyophilization protective agent at a concentration of 21.49% at a 1:1 ratio, a combination of Tween 80, melatonin, and β-carotene was added to regulate the cell membrane, which increased the lyophilization survival rate by 32.08–86.05%. This study proposes new research directions and ideas for improving the survival rate of probiotics for industrial production.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kai Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhihao Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|