1
|
Vitkova V, Hazarosova R, Valkova I, Momchilova A, Staneva G. Glycerophospholipid polyunsaturation modulates resveratrol action on biomimetic membranes. Colloids Surf B Biointerfaces 2024; 238:113922. [PMID: 38678790 DOI: 10.1016/j.colsurfb.2024.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.
Collapse
Affiliation(s)
- Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria.
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Iva Valkova
- Faculty of Pharmacy, Medical University, Sofia 1000, Bulgaria; Drug Design and Development Lab, Sofia Tech Park, Sofia 1784, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
2
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Morocho Z, Panella M, Gamez Hernandez A, Clarke C, Perez E, Silverberg S, Lee S. Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure. ACS Pharmacol Transl Sci 2024; 7:1546-1556. [PMID: 38751632 PMCID: PMC11091966 DOI: 10.1021/acsptsci.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence suggests that many bioactive molecules can nonspecifically modulate the physicochemical properties of membranes and influence the action of embedded membrane proteins. This study investigates the interactions of curcumin with protein-free model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC with cholesterol (4/1 mol ratio). The focus is on the capability of curcumin to modify membrane barrier properties such as water permeability assayed through the droplet interface bilayer (DIB) model membrane. For pure DOPC, our findings show a concentration-dependent biphasic effect: a reduction in water permeability is observed at low concentrations (up to 2 mol %), whereas at high concentrations of curcumin, water permeability increases. In the presence of cholesterol, we observed an overall reduction in water permeability. A combination of complementary experimental methods, including phase transition parameters studied by differential scanning calorimetry (DSC) and structural properties measured by attenuated total reflectance (ATR)-FTIR, provides a deeper understanding of concentration-dependent interactions of curcumin with DOPC bilayers in the absence and presence of cholesterol. Our experimental findings align with a molecular mechanism of curcumin's interaction with model membranes, wherein its effect is contingent on its concentration. At low concentrations, curcumin binds to the lipid-water interface through hydrogen bonding with the phosphate headgroup, thereby obstructing the transport of water molecules. Conversely, at high concentrations, curcumin permeates the acyl chain region, inducing packing disorders and demonstrating evidence of phase separation. Enhanced knowledge of the impact of curcumin on membranes, which, in turn, can affect protein function, is likely to be beneficial for the successful translation of curcumin into effective medicine.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Zachary Morocho
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Micaela Panella
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
3
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Perla W, Poust C, Gamez Hernandez A, Clarke C, Silverberg S, Perez E, Lee S. Differential Effects of Soy Isoflavones on the Biophysical Properties of Model Membranes. J Phys Chem B 2024; 128:2412-2424. [PMID: 38417149 PMCID: PMC10945484 DOI: 10.1021/acs.jpcb.3c08390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
The effects that the main soy isoflavones, genistein and daidzein, have upon the biophysical properties of a model lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC with cholesterol (4 to 1 mol ratio) have been investigated by transbilayer water permeability, differential scanning calorimetry, and confocal Raman microspectroscopy. Genistein is found to increase water permeability, decrease phase transition temperature, reduce enthalpy of transition, and induce packing disorder in the DOPC membrane with an increasing concentration. On the contrary, daidzein decreases water permeability and shows negligible impact on thermodynamic parameters and packing disorder at comparable concentrations. For a cholesterol-containing DOPC bilayer, both genistein and daidzein exhibit an overall less pronounced effect on transbilayer water permeability. Their respective differential abilities to modify the physical and structural properties of biomembranes with varying lipid compositions signify a complex and sensitive nature to isoflavone interactions, which depends on the initial state of bilayer packing and the differences in the molecular structures of these soy isoflavones, and provide insights in understanding the interactions of these molecules with cellular membranes.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Wilber Perla
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Christopher Poust
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
4
|
Płachta Ł, Mach M, Kowalska M, Wydro P. The effect of trans-resveratrol on the physicochemical properties of lipid membranes with different cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184212. [PMID: 37774995 DOI: 10.1016/j.bbamem.2023.184212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/01/2023]
Abstract
Resveratrol is one of the most popular phytoalexins, which naturally occurs in grapes and red wine. This compound not only has beneficial effects on the human body, especially on the cardiovascular system, but also has antiviral, antibacterial and antifungal properties. In addition, resveratrol may have therapeutic effects against various types of cancer. The mechanism of action of resveratrol is not fully understood, but it is suspected that one of the most important steps is its interaction with the cell membrane and changing its molecular organization. Therefore, in the present study, we investigated the effects of resveratrol at different concentrations (0-75 μM) on model membranes composed of POPC, SM and cholesterol, in systems with different cholesterol contents and a constant POPC/SM molar ratio (1:1). Our tests included systems containing 5, 15 and 33.3 mol% cholesterol. Tests were carried out for monolayers using the Langmuir monolayer technique supported by Brewster angle microscopy and penetration experiments. Bilayer (liposome) experiments included calcein release, steady-state DPH fluorescence anisotropy and partition coefficients. The results showed that resveratrol interacts with model cell membranes (lipid monolayers and lipid bilayers), and its incorporation into membranes is accompanied by changes in their physicochemical parameters, such as lipid packing, fluidity and permeability. Furthermore, we showed that the cholesterol content of the membrane significantly affects the degree of incorporation of resveratrol into the model membrane, which may indicate that the molecular mechanism of action of this compound is closely related to its interactions with lipid rafts, domains responsible for regulating various cellular functions.
Collapse
Affiliation(s)
- Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Hazarosova R, Momchilova A, Vitkova V, Yordanova V, Kostadinova A, Angelova MI, Tessier C, Nuss P, Staneva G. Structural Changes Induced by Resveratrol in Monounsaturated and Polyunsaturated Phosphatidylcholine-Enriched Model Membranes. MEMBRANES 2023; 13:909. [PMID: 38132913 PMCID: PMC10744944 DOI: 10.3390/membranes13120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Resveratrol (Resv) is considered to exert a beneficial impact due to its radical scavenger, anti-microbial and anti-inflammatory properties through several mechanisms that could include its interaction with the cell plasma membrane. To address this issue, we investigated the influence of Resv on membrane lipid order and organization in large unilamellar vesicles composed of different lipids and ratios. The studied lipid membrane models were composed of phosphatidylcholine (PC) species (either palmitoyl-docosahexaenoyl phosphatidylcholine (PDPC) or palmitoyl-oleoyl phosphatidylcholine (POPC)), sphingomyelin (SM) and cholesterol (Chol). This study found that the addition of Resv resulted in complex membrane reorganization depending on the degree of fatty acid unsaturation at the sn-2 position, and the Lipid/Resv and SM/Chol ratios. Resv rigidified POPC-containing membranes and increased liquid-ordered (Lo) domain formation in 40/40/20 POPC/SM/Chol mixtures as this increase was lower at a 33/33/34 ratio. In contrast, Resv interacted with PDPC/SM/Chol mixtures in a bimodal manner by fluidizing/rigidifying the membranes in a dose-dependent way. Lo domain formation upon Resv addition occurred via the following bimodal mode of action: Lo domain size increased at low Resv concentrations; then, Lo domain size decreased at higher ones. To account for the variable effect of Resv, we suggest that it may act as a "spacer" at low doses, with a transition to a more "filler" position in the lipid bulk. We hypothesize that one of the roles of Resv is to tune the lipid order and organization of cell plasma membranes, which is closely linked to important cell functions such as membrane sorting and trafficking.
Collapse
Affiliation(s)
- Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria;
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Miglena I. Angelova
- Department of Physics, Faculty of Sciences and Engineering, Sorbonne University, 75005 Paris, France;
- Matière et Systèmes Complexes (MSC), CNRS UMR 7057, University Paris Cite, 75013 Paris, France
| | - Cedric Tessier
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France; (C.T.); (P.N.)
| | - Philippe Nuss
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France; (C.T.); (P.N.)
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, 75012 Paris, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| |
Collapse
|
6
|
Krmic M, Perez E, Scollan P, Ivanchenko K, Gamez Hernandez A, Giancaspro J, Rosario J, Ceja-Vega J, Gudyka J, Porteus R, Lee S. Aspirin Interacts with Cholesterol-Containing Membranes in a pH-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16444-16456. [PMID: 37939382 PMCID: PMC10666536 DOI: 10.1021/acs.langmuir.3c02242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Aspirin has been used for broad therapeutic treatment, including secondary prevention of cardiovascular disease associated with increased cholesterol levels. Aspirin and other nonsteroidal anti-inflammatory drugs have been shown to interact with lipid membranes and change their biophysical properties. In this study, mixed lipid model bilayers made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) comprising varying concentrations of cholesterol (10:1, 4:1, and 1:1 mole ratio of lipid:chol), prepared by the droplet interface bilayer method, were used to examine the effects of aspirin at various pH on transbilayer water permeability. The presence of aspirin increases the water permeability of POPC bilayers in a concentration-dependent manner, with a greater magnitude of increase at pH 3 compared to pH 7. In the presence of cholesterol, aspirin is similarly shown to increase water permeability; however, the extent of the increase depends on both the concentration of cholesterol and the pH, with the least pronounced enhancement in water permeability at high cholesterol levels at pH 7. A fusion of data from differential scanning calorimetry, confocal Raman microspectrophotometry, and interfacial tensiometric measurements demonstrates that aspirin can promote significant thermal, structural, and interfacial property perturbations in the mixed-lipid POPC or DOPC membranes containing cholesterol, indicating a disordering effect on the lipid membranes. Our findings suggest that aspirin fluidizes phosphocholine membranes in both cholesterol-free and cholesterol-enriched states and that the overall effect is greater when aspirin is in a neutral state. These results confer a deeper comprehension of the divergent effects of aspirin on biological membranes having heterogeneous compositions, under varying physiological pH and different cholesterol compositions, with implications for a better understanding of the gastrointestinal toxicity induced by the long term use of this important nonsteroidal anti-inflammatory molecule.
Collapse
Affiliation(s)
- Michael Krmic
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|