1
|
Lavrič M, Bar L, Villanueva ME, Losada-Pérez P, Iglič A, Novak N, Cordoyiannis G. Assessing the Quality of Solvent-Assisted Lipid Bilayers Formed at Different Phases and Aqueous Buffer Media: A QCM-D Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:6093. [PMID: 39338837 PMCID: PMC11435612 DOI: 10.3390/s24186093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence of several parameters on the quality of SLBs formed on Au- and SiO2-coated sensors. The influence of the aqueous medium (i.e., buffer type) and the adsorption temperature, above and below the lipid melting point, is neatly explored for SLBs of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine formed by a solvent exchange. Below the lipid melting temperature, quality variations are observed upon the formation on Au and SiO2 surfaces, with the SLBs being more homogeneous for the latter. We further investigate how the buffer affects the detection of lipid melting in SLBs, a transition that necessitates high-sensitivity and time-consuming surface-sensitive techniques to be detected.
Collapse
Affiliation(s)
- Marta Lavrič
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| | - Laure Bar
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Martin E. Villanueva
- Experimental Soft Matter and Thermal Physics Group, Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.E.V.); (P.L.-P.)
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group, Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.E.V.); (P.L.-P.)
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nikola Novak
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| | - George Cordoyiannis
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.L.); (N.N.)
| |
Collapse
|
2
|
Gao J, Hou R, Hu W, Weikl TR, Hu J. Which Coverages of Arc-Shaped Proteins Are Required for Membrane Tubulation? J Phys Chem B 2024; 128:4735-4740. [PMID: 38706129 DOI: 10.1021/acs.jpcb.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Arc-shaped BIN/Amphiphysin/Rvs (BAR) domain proteins generate curvature by binding to membranes and induce membrane tubulation at sufficiently large protein coverages. For the amphiphysin N-BAR domain, Le Roux et al., Nat. Commun. 2021, 12, 6550, measured a threshold coverage of 0.44 ± 0.097 for nanotubules emerging from the supported lipid bilayer. In this article, we systematically investigate membrane tubulation induced by arc-shaped protein-like particles with coarse-grained modeling and simulations and determine the threshold coverages at different particle-particle interaction strengths and membrane spontaneous curvatures. In our simulations, the binding of arc-shaped particles induces a membrane shape transition from spherical vesicles to tubules at a particle threshold coverage of about 0.5, which is rather robust to variations of the direct attractive particle interactions or spontaneous membrane curvature in the coarse-grained model. Our study suggests that threshold coverages of around or slightly below 0.5 are a general requirement for membrane tubulation by arc-shaped BAR domain proteins.
Collapse
Affiliation(s)
- Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruihan Hou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbing Hu
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thomas R Weikl
- Department of Bio-Molecular Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Mesarec L, Kralj S, Iglič A. Biaxial Structures of Localized Deformations and Line-like Distortions in Effectively 2D Nematic Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:246. [PMID: 38334517 PMCID: PMC10856884 DOI: 10.3390/nano14030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
We numerically studied localized elastic distortions in curved, effectively two-dimensional nematic shells. We used a mesoscopic Landau-de Gennes-type approach, in which the orientational order is theoretically considered by introducing the appropriate tensor nematic order parameter, while the three-dimensional shell shape is described by the curvature tensor. We limited our theoretical consideration to axially symmetric shapes of nematic shells. It was shown that in the surface regions of stomatocyte-class nematic shell shapes with large enough magnitudes of extrinsic (deviatoric) curvature, the direction of the in-plane orientational ordering can be mutually perpendicular above and below the narrow neck region. We demonstrate that such line-like nematic distortion configurations may run along the parallels (i.e., along the circular lines of constant latitude) located in the narrow neck regions of stomatocyte-like nematic shells. It was shown that nematic distortions are enabled by the order reconstruction mechanism. We propose that the regions of nematic shells that are strongly elastically deformed, i.e., topological defects and line-like distortions, may attract appropriately surface-decorated nanoparticles (NPs), which could potentially be useful for the controlled assembly of NPs.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Pezeshkian W, Ipsen JH. Mesoscale simulation of biomembranes with FreeDTS. Nat Commun 2024; 15:548. [PMID: 38228588 PMCID: PMC10792169 DOI: 10.1038/s41467-024-44819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
We present FreeDTS software for performing computational research on biomembranes at the mesoscale. In this software, a membrane is represented by a dynamically triangulated surface equipped with vertex-based inclusions to integrate the effects of integral and peripheral membrane proteins. Several algorithms are included in the software to simulate complex membranes at different conditions such as framed membranes with constant tension, vesicles and high-genus membranes with various fixed volumes or constant pressure differences and applying external forces to membrane regions. Furthermore, the software allows the user to turn off the shape evolution of the membrane and focus solely on the organization of proteins. As a result, we can take realistic membrane shapes obtained from, for example, cryo-electron tomography and backmap them into a finer simulation model. In addition to many biomembrane applications, this software brings us a step closer to simulating realistic biomembranes with molecular resolution. Here we provide several interesting showcases of the power of the software but leave a wide range of potential applications for interested users.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - John H Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
5
|
Mesarec L, Góźdź W, Kralj-Iglič V, Kralj S, Iglič A. Coupling of nematic in-plane orientational ordering and equilibrium shapes of closed flexible nematic shells. Sci Rep 2023; 13:10663. [PMID: 37393271 DOI: 10.1038/s41598-023-37664-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
The impact of the intrinsic curvature of in-plane orientationally ordered curved flexible nematic molecules attached to closed 3D flexible shells was studied numerically. A Helfrich-Landau-de Gennes-type mesoscopic approach was adopted where the flexible shell's curvature field and in-plane nematic field are coupled and concomitantly determined in the process of free energy minimisation. We demonstrate that this coupling has the potential to generate a rich diversity of qualitatively new shapes of closed 3D nematic shells and the corresponding specific in-plane orientational ordering textures, which strongly depend on the shell's volume-to-surface area ratio, so far not predicted in mesoscopic-type numerical studies of 3D shapes of closed flexible nematic shells.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, 1000, Ljubljana, Slovenia
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000, Maribor, Slovenia
- Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Duncan AL, Pezeshkian W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys J 2023; 122:1883-1889. [PMID: 36809878 PMCID: PMC10257116 DOI: 10.1016/j.bpj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Computer simulation techniques form a versatile tool, a computational microscope, for exploring biological processes. This tool has been particularly effective in exploring different features of biological membranes. In recent years, thanks to elegant multiscale simulation schemes, some fundamental limitations of investigations by distinct simulation techniques have been resolved. As a result, we are now capable of exploring processes spanning multiple scales beyond the capacity of any single technique. In this perspective, we argue that mesoscale simulations require more attention and must be further developed to fill evident gaps in a quest toward simulating and modeling living cell membranes.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Chakraborty H, Sengupta D. Preface to Special Issue on Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:633-635. [PMID: 36367553 DOI: 10.1007/s00232-022-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| | - Durba Sengupta
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|