1
|
Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting. J Mater Chem B 2021; 8:3959-3971. [PMID: 32222756 DOI: 10.1039/d0tb00289e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, nanoparticle-based drug delivery systems have been extensively explored. However, the average tumour enrichment ratio of passive targeting systems corresponds to only 0.7% due to the nonspecific uptake by normal organs and poor selective retention in tumours. The therapeutic specificity and efficacy of nano-medicine can be enhanced by equipping it with active targeting ligands, although it is not possible to ignore the recognition and clearance of the reticuloendothelial system (RES) caused by targeting ligands. Given the complexity of the systemic circulation environment, it is necessary to carefully consider the hydrophobicity, immunogenicity, and electrical property of targeting ligands. Thus, for an active targeting system, the targeting ligands should be shielded in blood circulation and de-shielded in the tumour region for enhanced tumour accumulation. In this study, strategies for improving the performance of active targeting ligands are introduced. The strategies include irreversible shielding, reversible shielding, and methods of modulating the multivalent interactions between ligands and receptors. Furthermore, challenges and future developments in designing active ligand targeting systems are also discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
van der Krogt JMA, van Binsbergen WH, van der Laken CJ, Tas SW. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun Rev 2021; 20:102764. [PMID: 33476822 DOI: 10.1016/j.autrev.2021.102764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.
Collapse
Affiliation(s)
- Jeffrey M A van der Krogt
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter H van Binsbergen
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers (Basel) 2019; 11:polym11040745. [PMID: 31027272 PMCID: PMC6523186 DOI: 10.3390/polym11040745] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.
Collapse
|
5
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res 2019; 9:366-378. [PMID: 30280318 PMCID: PMC6328514 DOI: 10.1007/s13346-018-0589-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages play a key role in the pathophysiology of rheumatoid arthritis (RA). Notably, positive correlations have been reported between synovial macrophage infiltration and disease activity as well as therapy outcome in RA patients. Hence, macrophages can serve as an important target for both imaging disease activity and drug delivery in RA. Folate receptor β (FRβ) is a glycosylphosphatidyl (GPI)-anchored plasma membrane protein being expressed on myeloid cells and activated macrophages. FRβ harbors a nanomolar binding affinity for folic acid allowing this receptor to be exploited for RA disease imaging (e.g., folate-conjugated PET tracers) and therapeutic targeting (e.g., folate antagonists and folate-conjugated drugs). This review provides an overview of these emerging applications in RA by summarizing and discussing properties of FRβ, expression of FRβ in relation to macrophage polarization, FRβ-targeted in vivo imaging modalities, and FRβ-directed drug targeting.
Collapse
Affiliation(s)
- Durga M S H Chandrupatla
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Jones SK, Douglas K, Shields AF, Merkel OM. Correlating quantitative tumor accumulation and gene knockdown using SPECT/CT and bioluminescence imaging within an orthotopic ovarian cancer model. Biomaterials 2018; 178:183-192. [PMID: 29935386 PMCID: PMC6056733 DOI: 10.1016/j.biomaterials.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
Using an orthotopic model of ovarian cancer, we studied the delivery of siRNA in nanoparticles of tri-block copolymers consisting of hyperbranched polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hyPEI-g-PCL-b-PEG) with and without a folic acid targeting ligand. A SKOV-3/LUC FRα overexpressing cell line was employed to mimic the clinical manifestations of ovarian cancer. Both targeted and non-targeted micelleplexes were able to effectively deliver siRNA to the primary tumor and its metastases, as measured by gamma scintillation counting and confocal microscopy. Stability of the micelleplexes was demonstrated with a serum albumin binding study. Regarding biodistribution, intravenous (I.V.) administration showed a slight advantage of FRα targeted over non-targeted micelleplex accumulation within the tumor. However, both formulations displayed significant liver uptake. On the other hand, intraperitoneally (I.P.) injected mice showed a modest 6% of the injected dose per gram (ID/g) uptake within the primary and most interestingly also in the metastatic lesions which subsequently resulted in a 62% knockdown of firefly luciferase expression in the tumor after a single injection. While this is, to the best of our knowledge, the first paper that correlates quantitative tumor accumulation in an orthotopic tumor model with in vivo gene silencing, these data demonstrate that PEI-g-PCL-b-PEG-Fol conjugates are a promising option for gene knockdown in ovarian cancer.
Collapse
Affiliation(s)
- Steven K Jones
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirk Douglas
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, Wayne State University School of Pharmacy and Health Sciences, Detroit, MI, USA; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Jones SK, Sarkar A, Feldmann DP, Hoffmann P, Merkel OM. Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials 2017; 138:35-45. [PMID: 28551461 DOI: 10.1016/j.biomaterials.2017.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Polymeric nanoparticles have been studied for gene and drug delivery. These nanoparticles can be modified to utilize a targeted delivery approach to selectively deliver their payload to specific cells, while avoiding unwanted delivery to healthy cells. One commonly over-expressed receptor which can be targeted by ligand-conjugated nanoparticles is the folate receptor alpha (FRα). The ability to target FRα remains a promising concept, and therefore, understanding the binding dynamics of the receptor with the ligand of the nanoparticle therapeutic can provide valuable insight. This manuscript focuses on the interaction between self-assembled nanoparticles decorated with a folic acid (FA) ligand and FRα. The nanoparticles consist of micelles formed with a FA conjugated triblock copolymer (PEI-g-PCL-b-PEG-FA) which condensed siRNA to form micelleplexes. By combining biological and biophysical approaches, this manuscript explores the binding kinetics and force of the targeted siRNA containing nanoparticles to FRα in comparison with free FA. We demonstrate via flow cytometry and atomic force microscopy that multivalent micelleplexes bind to FRα with a higher binding probability and binding force than monovalent FA. Furthermore, we revisited why competitive inhibition studies of binding of multivalent nanoparticles to their respective receptor are often reported in literature to be inconclusive evidence of effective receptor targeting. In conclusion, the results presented in this paper suggest that multivalent targeted nanoparticles display strong receptor binding that a monovalent ligand may not be able to compete with under in vitro conditions and that high concentrations of competing monovalent ligands can lead to measurement artifacts.
Collapse
Affiliation(s)
- Steven K Jones
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anwesha Sarkar
- Department of Physics and Astronomy, Wayne State University of College of Liberal Arts and Sciences, Detroit, MI, USA
| | - Daniel P Feldmann
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Hoffmann
- Department of Physics and Astronomy, Wayne State University of College of Liberal Arts and Sciences, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmaceutical Sciences, Wayne State University School of Pharmacy and Health Sciences, Detroit, MI, USA; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Munich, Germany; Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Chude-Okonkwo UAK, Malekian R, Maharaj BTS. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites_newline With Diversely Expressed Enzymes. IEEE Trans Nanobioscience 2016; 15:230-45. [DOI: 10.1109/tnb.2016.2526783] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Ding C, Tian Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens Bioelectron 2015; 65:183-90. [DOI: 10.1016/j.bios.2014.10.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 02/04/2023]
|
11
|
Serpe L, Gallicchio M, Canaparo R, Dosio F. Targeted treatment of folate receptor-positive platinum-resistant ovarian cancer and companion diagnostics, with specific focus on vintafolide and etarfolatide. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:31-42. [PMID: 24516337 PMCID: PMC3917542 DOI: 10.2147/pgpm.s58374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the gynecological malignancies, ovarian cancer is the leading cause of mortality in developed countries. Treatment of ovarian cancer is based on surgery integrated with chemotherapy. Platinum-based drugs (cisplatin and carboplatin) comprise the core of first-line chemotherapy for patients with advanced ovarian cancer. Platinum-resistant ovarian cancer can be treated with cytotoxic chemotherapeutics such as paclitaxel, topotecan, PEGylated liposomal doxorubicin, or gemcitabine, but many patients eventually relapse on treatment. Targeted therapies based on agents specifically directed to overexpressed receptors, or to selected molecular targets, may be the future of clinical treatment. In this regard, overexpression of folate receptor-α on the surface of almost all epithelial ovarian cancers makes this receptor an excellent "tumor-associated antigen". With appropriate use of spacers/linkers, folate-targeted drugs can be distributed within the body, where they preferentially bind to ovarian cancer cells and are released inside their target cells. Here they can exert their desired cytotoxic function. Based on this strategy, 12 years after it was first described, a folate-targeted vinblastine derivative has now reached Phase III clinical trials in ovarian cancer. This review examines the importance of folate targeting, the state of the art of a vinblastine folate-targeted agent (vintafolide) for treating platinum-resistant ovarian cancer, and its diagnostic companion (etarfolatide) as a prognostic agent. Etarfolatide is a valuable noninvasive diagnostic imaging agent with which to select ovarian cancer patient populations that may benefit from this specific targeted therapy.
Collapse
Affiliation(s)
- Loredana Serpe
- Department of Drug Science and Technology, University of Turin, Italy
| | | | - Roberto Canaparo
- Department of Drug Science and Technology, University of Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Italy
| |
Collapse
|
12
|
Holm J, Babol LN, Markova N, Lawaetz AJ, Hansen SI. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:512-9. [PMID: 24374293 DOI: 10.1016/j.bbapap.2013.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding increased concentration-dependent self-association of FBP into stable multimers of holo-FBP. DSC of 3.3μM holo-FBP showed Tm (76°C) and molar enthalpy (146kcalM(-1)) values increasing to 78°C and 163kcalM(-1) at 10μM holo-FBP, while those of apo-FBP were 55°C and 105kcalM(-1). Besides ligand binding, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10μM) in DLS after a step-wise rise in temperature to 78°C≈Tm. Stable holo-FBP multimers may protect naturally occurring labile folates against decomposition or bacterial utilization. DSC established an interrelationship between diminished folate binding at pH5, especially in NaCl-free buffers, and low thermostability. Positively charged apo-FBP was almost completely unfolded and aggregated at pH5 (Tm 38°C) and holo-FBP, albeit more thermostable, was labile with aggregation tendency. Addition of 0.15M NaCl increased thermostability of apo-FBP drastically, and even more so that of holo-FBP. Electrostatic forces thus seem to contribute to a diminished thermostability at low pH. Fluorescence spectroscopy after irreversible thermal unfolding of FBP revealed a weak-affinity folate binding.
Collapse
Affiliation(s)
- Jan Holm
- Department of Clinical Biochemistry, Nordsjællands Hospital-Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| | - Linnea N Babol
- GE Healthcare, Life Sciences Bio-Sciences AB, Bjørkgatan 30, 751 84 Uppsala, Sweden
| | - Natalia Markova
- GE Healthcare, Life Sciences Bio-Sciences AB, Bjørkgatan 30, 751 84 Uppsala, Sweden
| | - Anders J Lawaetz
- Faculty of Science, Department of Food Science, Spectroscopy and Chemometrics, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Steen I Hansen
- Department of Clinical Biochemistry, Nordsjællands Hospital-Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| |
Collapse
|
13
|
Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, Veerubhotla RS, Edagwa BJ, Kabanov AV, Bronich T, Gendelman HE, Liu XM. Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:1263-73. [PMID: 23680933 PMCID: PMC3779529 DOI: 10.1016/j.nano.2013.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 01/16/2023]
Abstract
Macrophages serve as vehicles for the carriage and delivery of polymer-coated nanoformulated antiretroviral therapy (nanoART). Although superior to native drug, high drug concentrations are required for viral inhibition. Herein, folate-modified ritonavir-boosted atazanavir (ATV/r)-encased polymers facilitated macrophage receptor targeting for optimizing drug dosing. Folate coating of nanoART ATV/r significantly enhanced cell uptake, retention and antiretroviral activities without altering cell viability. Enhanced retentions of folate-coated nanoART within recycling endosomes provided a stable subcellular drug depot. Importantly, up to a five-fold enhanced plasma and tissue drug levels followed folate-coated formulation injection in mice. Folate polymer encased ATV/r improves nanoART pharmacokinetics bringing the technology one step closer to human use. FROM THE CLINICAL EDITOR This team of authors describes a novel method for macrophage folate receptor-targeted antiretroviral therapy. Atazanvir entry, retention, and antiretroviral activities were superior using the presented method, and so was its biodistribution, enabling a more efficient way to address human immunodeficiency virus infections, with a hoped for clinical application in the near future.
Collapse
Affiliation(s)
- Pavan Puligujja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Lindsey Kendrick
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Tianyuzi Li
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Shantanu Balkundi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Ram S. Veerubhotla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Alexander V. Kabanov
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Tatiana Bronich
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Xin-Ming Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| |
Collapse
|
14
|
Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci U S A 2013; 110:15180-8. [PMID: 23934049 DOI: 10.1073/pnas.1308827110] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.
Collapse
|
15
|
|
16
|
Moradi E, Vllasaliu D, Garnett M, Falcone F, Stolnik S. Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv 2012. [DOI: 10.1039/c2ra01168a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1919-31. [PMID: 21695781 PMCID: PMC3136586 DOI: 10.1002/smll.201100442] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 05/19/2023]
Abstract
Nanomedicine is an emerging field that applies concepts in nanotechnology to develop novel diagnostics and therapies. Physical and chemical properties of particles, including size, shape, modulus, surface charge and surface chemistry, play an important role in determining particle-cell interactions, cellular trafficking mechanisms, biodistribution, and pharmacokinetics. This discussion focuses on both nanoparticles and microparticles since microparticles can also provide many insights for the development of drug carriers and possess advantages over nanoparticles in certain applications. This review covers recent major advancement in the nanomedicine field and also highlights studies using the PRINT technology.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, Carolina Center of Cancer Nanotechnology Excellence, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - James D. Byrne
- Department of Chemistry, Carolina Center of Cancer Nanotechnology Excellence, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Mary E. Napier
- Department of Chemistry, Carolina Center of Cancer Nanotechnology Excellence, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | | |
Collapse
|
18
|
Lu Y, Stinnette TW, Westrick E, Klein PJ, Gehrke MA, Cross VA, Vlahov IR, Low PS, Leamon CP. Treatment of experimental adjuvant arthritis with a novel folate receptor-targeted folic acid-aminopterin conjugate. Arthritis Res Ther 2011; 13:R56. [PMID: 21463515 PMCID: PMC3132048 DOI: 10.1186/ar3304] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/23/2011] [Accepted: 04/04/2011] [Indexed: 12/11/2022] Open
Abstract
Introduction Folate receptor (FR)-expressing macrophages have been shown to accumulate at sites of inflammation, where they promote development of inflammatory symptoms. To target such a macrophage population, we designed and evaluated the biologic activity of EC0746, a novel folic acid conjugate of the highly potent antifolate, aminopterin. Methods Using a FR-positive subclone of murine macrophage-derived RAW264.7 cells and rat thioglycollate-elicited macrophages, we studied the effect of EC0746 on dihydrofolate reductase activity, cell proliferation, and cellular response towards bacterial lipopolysaccharide as well as IFNγ activation. The EC0746 anti-inflammatory activity, pharmacokinetics, and toxicity were also evaluated in normal rats or in rats with adjuvant-induced arthritis; that is, a FR-positive macrophage model that closely resembles rheumatoid arthritis in humans. Results EC0746 suppresses the proliferation of RAW264.7 cells and prevents the ability of nonproliferating rat macrophages to respond to inflammatory stimuli. In the macrophage-rich rat arthritis model, brief treatment with subcutaneously administered EC0746 is shown to mediate an FR-specific anti-inflammatory response that is more potent than either orally administered methotrexate or subcutaneously delivered etanercept. More importantly, EC0746 therapy is also shown to be ~40-fold less toxic than unmodified aminopterin, with fewer bone marrow and gastrointestinal problems. Conclusions EC0746 is the first high FR-binding dihydrofolate reductase inhibitor that demonstrates FR-specific anti-inflammatory activities both in vitro and in vivo. Our data reveal that a relatively toxic anti-inflammatory drug, such as aminopterin, can be targeted with folic acid to inflammatory macrophages and thereby relieve inflammatory symptoms with greatly reduced toxicity.
Collapse
Affiliation(s)
- Yingjuan Lu
- Endocyte, Inc., 3000 Kent Avenue, West Lafayette, IN 47906, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elnakat H, Gonit M, D’Alincourt Salazar M, Zhang J, Basrur V, Gunning W, Kamen B, Ratnam M. Regulation of Folate Receptor Internalization by Protein Kinase C α. Biochemistry 2009; 48:8249-60. [DOI: 10.1021/bi900565t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hala Elnakat
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Mesfin Gonit
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Marcela D’Alincourt Salazar
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Juan Zhang
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
- Crown BioScience, Inc., Beijing, China
| | - Venkatesha Basrur
- Division of Pathology Informatics, Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, Michigan 48109
| | - William Gunning
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| | - Barton Kamen
- UMDNJ-R. W. Johnson Medical School, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901
| | - Manohar Ratnam
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, Ohio 43614
| |
Collapse
|
20
|
Salbaum JM, Finnell RH, Kappen C. Regulation of folate receptor 1 gene expression in the visceral endoderm. ACTA ACUST UNITED AC 2009; 85:303-13. [PMID: 19180647 DOI: 10.1002/bdra.20537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nutrient supply to the developing mammalian embryo is a fundamental requirement. Before completion of the chorioallantoic placenta, the visceral endoderm plays a crucial role in nurturing the embryo. We have found that visceral endoderm cells express folate receptor 1, a high-affinity receptor for the essential micronutrient folic acid, suggesting that the visceral endoderm has an important function for folate transport to the embryo. The mechanisms that direct expression of FOLR1 in the visceral endoderm are unknown. METHODS Sequences were tested for transcriptional activation capabilities in the visceral endoderm utilizing reporter gene assays in a cell model for extraembryonic endoderm in vitro, and in transgenic mice in vivo. RESULTS With F9 embryo carcinoma cells as a model for extraembryonic endoderm, we demonstrate that the P4 promoter of the human FOLR1 gene is active during differentiation of the cells towards visceral endoderm. However, transgenic mouse experiments show that promoter sequences alone are insufficient to elicit reporter gene transcription in vivo. Using sequence conservation as guide to choose genomic sequences from the human FOLR1 gene locus, we demonstrate that the sequence termed F1CE2 exhibits specific enhancer activity in F9 cells in vitro, in the visceral endoderm, and later the yolk sac in transgenic mouse embryos in vivo. We further show that the transcription factor HNF4-alpha can activate this enhancer sequence. CONCLUSIONS We have identified a transcriptional enhancer sequence from the FOLR1 locus with specific activity in vitro and in vivo, and suggest that FOLR1 is a target for regulation by HNF4-alpha.
Collapse
Affiliation(s)
- J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA.
| | | | | |
Collapse
|
21
|
Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 2009; 10:691-712. [PMID: 19416475 DOI: 10.1111/j.1600-0854.2009.00902.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Kopantzev EP, Monastyrskaya GS, Vinogradova TV, Zinovyeva MV, Kostina MB, Filyukova OB, Tonevitsky AG, Sukhikh GT, Sverdlov ED. Differences in gene expression levels between early and later stages of human lung development are opposite to those between normal lung tissue and non-small lung cell carcinoma. Lung Cancer 2008; 62:23-34. [DOI: 10.1016/j.lungcan.2008.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 02/14/2008] [Indexed: 12/12/2022]
|
23
|
Cai T, Wang H, Chen Y, Liu L, Gunning WT, Quintas LEM, Xie ZJ. Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. ACTA ACUST UNITED AC 2008; 182:1153-69. [PMID: 18794328 PMCID: PMC2542476 DOI: 10.1083/jcb.200712022] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.
Collapse
Affiliation(s)
- Ting Cai
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The role of cholesterol in the regulation of endosome motility was investigated by monitoring the intracellular trafficking of endocytosed folate receptors (FRs) labeled with fluorescent folate conjugates. Real-time fluorescence imaging of HeLa cells transfected with green fluorescent protein-tubulin revealed that FR-containing endosomes migrate along microtubules. Moreover, microinjection with antibodies that inhibit microtubule-associated motor proteins demonstrated that dynein and kinesin I participate in the delivery of FR-containing endosomes to the perinuclear area and plasma membrane, respectively. Further, single-particle tracking analysis revealed bidirectional motions of FR endosomes, mediated by dynein and kinesin motors associated with the same endosome. These experimental tools allowed us to use FR-containing endosomes to evaluate the impact of cholesterol on intracellular membrane trafficking. Lowering plasma membrane cholesterol by metabolic depletion or methyl-beta-cyclodextrin extraction was found to both increase FR-containing endosome motility and change endosome distribution from colocalization with Rab7 to colocalization with Rab4. These data provide evidence that cholesterol regulates intracellular membrane trafficking via modulation of the distribution of low molecular weight G-proteins that are adaptors for microtubule motors.
Collapse
|
25
|
Owen DM, Neil MAA, French PMW, Magee AI. Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol 2007; 18:591-8. [PMID: 17728161 DOI: 10.1016/j.semcdb.2007.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
Lateral organisation of cellular membranes, particularly the plasma membrane, is of benefit to the cell as it allows complicated cellular processes to be regulated and efficient. For example, trafficking and secretion of molecules can be targeted and directed, cells polarised and signalling events modulated and propagated. The fluid mosaic model allows for significant heterogeneity on the part of the lipids themselves and of membrane associated proteins. By exploiting the tendency of complex lipid bilayers to undergo spontaneous or induced phase-separation into non-miscible domains, the cell could achieve this desired spatial organisation. While phase-separation is readily observed in simple, artificial bilayers, its occurrence in physiological membranes remains controversial. This stems mainly from our inability to image lipid microdomains directly - possibly due to their small size, short lifespan and/or morphological similarity to the bulk membrane. In this review, we seek to examine the techniques used to try to image membrane lipid microdomains, concentrating mainly on optical microscopy techniques that are applicable to live cells. We also look at novel emerging instruments and methods that promise to overcome our current technological limitations and shed new light on these important structures.
Collapse
Affiliation(s)
- Dylan M Owen
- Chemical Biology Centre, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
26
|
Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev 2007; 59:782-97. [PMID: 17669543 PMCID: PMC2134838 DOI: 10.1016/j.addr.2007.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/12/2007] [Indexed: 11/29/2022]
Abstract
The targeted delivery of drugs to the cell interior can be accomplished by taking advantage of the various receptor-mediated endocytic pathways operating in a particular cell. Among these pathways, the retrograde trafficking pathway from endosomes to the Golgi apparatus, and endoplasmic reticulum is of special importance since it provides a route to deliver drugs bypassing the acid pH, hydrolytic environment of the lysosome. The existence of pathways for drug or antigen delivery to the endoplasmic reticulum and Golgi apparatus has been to a large extent an outcome of research on the trafficking of A/B type-bacterial or plant toxins such as Shiga toxin within the cell. The targeting properties of these toxins reside in their B subunit. In this article we present an overview of the multiplicity of pathways to deliver drugs intracellularly. We highlight the retrograde trafficking pathway illustrated by Shiga toxin and Shiga-like toxin, and the potential role of the B subunit of these toxins as carriers of drugs, antigens and imaging agents.
Collapse
Affiliation(s)
- Maria Teresa Tarragó-Trani
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
27
|
Abstract
For over a decade the folate receptor has been intensively investigated as a means for tumor-specific delivery of a broad range of experimental therapies including several conceptually new treatments. Despite a few set backs in clinical trials, the literature is replete with encouraging in vitro and pre-clinical studies of gynecological and other tumors and more therapeutic approaches are ready for clinical testing. Recent studies have added myelogenous leukemias to the list of candidate cancers for FR-targeted therapies. Each approach faces unique challenges in translation that could be addressed through a mechanistic understanding of the function and expression of the receptor in the appropriate experimental systems and by improvements in the technology. This review discusses FR in the context of positive recent developments in broad areas of FR-targeted therapy and attempts to highlight its potential and the anticipated challenges.
Collapse
|
28
|
Qi H, Ratnam M. Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 2006; 66:5875-82. [PMID: 16740727 DOI: 10.1158/0008-5472.can-05-4048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The folate receptor (FR) type beta is a promising target for therapeutic intervention in acute myelogenous leukemia (AML), owing particularly to its selective up-regulation in the leukemic cells by all-trans retinoic acid (ATRA). Here we show, using KG-1 and MV4-11 AML cells and recombinant 293 cells, that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA), valproic acid (VPA), and FK228 potentiated ATRA induction of FR-beta gene transcription and FR-beta mRNA/protein expression. ATRA and/or TSA did not induce de novo FR synthesis in any of a variety of FR-negative cell lines tested. TSA did not alter the effect of ATRA on the expression of retinoic acid receptor (RAR) alpha, beta, or gamma. Chromatin immunoprecipitation assays indicate that HDAC inhibitors act on the FR-beta gene by enhancing RAR-associated histone acetylation to increase the association of Sp1 with the basal FR-beta promoter. Under these conditions, the expression level of Sp1 is unaltered. A decreased availability of putative repressor AP-1 proteins may also indirectly contribute to the effect of HDAC inhibitors. Finally, FR-beta selectively mediated growth inhibition by (6S) dideazatetrahydrofolate in a manner that was greatly potentiated in AML cells by ATRA and HDAC inhibition. Therefore, the combination of ATRA and innocuous HDAC inhibitors may be expected to facilitate selective FR-beta-targeted therapies in AML.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CHO Cells
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cricetinae
- Drug Synergism
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Folate Receptors, GPI-Anchored
- Folic Acid Antagonists/administration & dosage
- Folic Acid Antagonists/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/classification
- Receptors, Retinoic Acid/metabolism
- Substrate Specificity
- Tetrahydrofolates/administration & dosage
- Tetrahydrofolates/pharmacology
- Transcription Factor AP-1/metabolism
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Up-Regulation/drug effects
- Valproic Acid/administration & dosage
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- Huiling Qi
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, Ohio, USA
| | | |
Collapse
|
29
|
Cheng ZJ, Singh RD, Marks DL, Pagano RE. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 2006; 23:101-10. [PMID: 16611585 DOI: 10.1080/09687860500460041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
30
|
Wollscheid B, von Haller PD, Yi E, Donohoe S, Vaughn K, Keller A, Nesvizhskii AI, Eng J, Li XJ, Goodlett DR, Aebersold R, Watts JD. Lipid raft proteins and their identification in T lymphocytes. Subcell Biochem 2004; 37:121-52. [PMID: 15376619 DOI: 10.1007/978-1-4757-5806-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
This review focuses on how membrane lipid rafts have been detected and isolated, mostly from lymphocytes, and their associated proteins identified. These proteins include transmembrane antigens/receptors, GPI-anchored proteins, cytoskeletal proteins, Src-family protein kinases, G-proteins, and other proteins involved in signal transduction. To further understand the biology of lipid rafts, new methodological approaches are needed to help characterize the raft protein component, and changes that occur in this component as a result of cell perturbation. We describe the application of new proteomic approaches to the identification and quantification of raft proteins in T-lymphocytes. Similar approaches, applied to other model cell systems, will provide valuable new insights into both cellular signal transduction and lipid raft biology.
Collapse
|
31
|
Stephenson SM, Low PS, Lee RJ. Folate receptor-mediated targeting of liposomal drugs to cancer cells. Methods Enzymol 2004; 387:33-50. [PMID: 15172156 DOI: 10.1016/s0076-6879(04)87003-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stacy M Stephenson
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
32
|
Abstract
The antifolates were the first class of antimetabolites to enter the clinics more than 50 years ago. Over the following decades, a full understanding of their mechanisms of action and chemotherapeutic potential evolved along with the mechanisms by which cells develop resistance to these drugs. These principals served as a basis for the subsequent exploration and understanding of the mechanisms of resistance to a variety of diverse antineoplastics with different cellular targets. This section describes the bases for intrinsic and acquired antifolate resistance within the context of the current understanding of the mechanisms of actions and cytotoxic determinants of these agents. This encompasses impaired drug transport into cells, augmented drug export, impaired activation of antifolates through polyglutamylation, augmented hydrolysis of antifolate polyglutamates, increased expression and mutation of target enzymes, and the augmentation of cellular tetrahydrofolate-cofactor pools in cells. This chapter also describes how these insights are being utilized to develop gene therapy approaches to protect normal bone marrow progenitor cells as a strategy to improve the efficacy of bone marrow transplantation. Finally, clinical studies are reviewed that correlate the cellular pharmacology of methotrexate with the clinical outcome in children with neoplastic diseases treated with this antifolate.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
33
|
Abstract
The chapter reviews the current understanding of the transport mechanisms for folates in mammalian cells--their molecular identities and organization, tissue expression, regulation, structures, and their kinetic and thermodynamic properties. This encompasses a variety of diverse processes. Best characterized is the reduced folate carrier, a member of the SLC19 family of facilitative carriers. But other facilitative organic anion carriers (SLC21), largely expressed in epithelial tissues, transport folates as well. In addition to these bi-directional carrier systems are the membrane-localized folate receptors alpha and beta, that mediate folate uptake unidirectionally into cells via an endocytotic process. There are also several transporters, typified by the family of multidrug resistance-associated proteins, that unidirectionally export folates from cells. There are transport activities for folates, that function optimally at low pH, related in part to the reduced folate carrier, with at least one activity that is independent of this carrier. The reduced folate carrier-associated low-pH route mediates intestinal folate transport. This review considers how these different transport processes contribute to the generation of transmembrane folate gradients and to vectorial flows of folates across epithelia. The role of folate transporters in mouse development, as assessed by homologous deletion of folate receptors and the reduced folate carrier, is described. Much of the focus is on antifolate cancer chemotherapeutic agents that are often model surrogates for natural folates in transport studies. In particular, antifolate transport mediated by the reduced folate carrier is a major determinant of the activity of, and resistance to, these agents. Finally, many of the key in vitro findings on the properties of antifolate transporters are now beginning to be extended to patient specimens, thus setting the stage for understanding response to these drugs in the clinical setting at the molecular level.
Collapse
Affiliation(s)
- Larry H Matherly
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
34
|
Ratnam M, Hao H, Zheng X, Wang H, Qi H, Lee R, Pan X. Receptor induction and targeted drug delivery: a new antileukaemia strategy. Expert Opin Biol Ther 2003; 3:563-74. [PMID: 12831362 DOI: 10.1517/14712598.3.4.563] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Strategic modalities of drug delivery have the potential to greatly improve the therapeutic efficacy of available drugs in acute myelogenous leukaemia (AML). Folate receptor (FR) type beta is selectively expressed on the surface of approximately 70% of AMLs. Increased FR-beta expression in these cells can be induced by all-trans retinoic acid (ATRA) and other retinoid compounds in the absence of terminal differentiation or cell growth inhibition. An apparent post-transcriptional modification prevents FR-beta in normal haematopoietic cells from binding folate, in contrast to AML cells. FR-beta may, therefore, be used as a target for the selective delivery of chemotherapeutic drugs to AML cells; this treatment modality appears to be particularly efficacious when administered in conjunction with retinoid-induction of FR-beta. FR-targeted liposomal drug delivery can also bypass the P-glycoprotein (P-gp)-mediated drug efflux pump commonly associated with multiple drug resistance in AML. The rationale and merits of this novel experimental treatment for AML and the current status of this research are provided.
Collapse
Affiliation(s)
- Manohar Ratnam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Ave, Toledo, OH 43614-5804, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Gosselin MA, Lee RJ. Folate receptor-targeted liposomes as vectors for therapeutic agents. BIOTECHNOLOGY ANNUAL REVIEW 2003; 8:103-31. [PMID: 12436917 DOI: 10.1016/s1387-2656(02)08006-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The folate receptor is a cell surface protein that has recently been identified as a tumor marker, due to its differential overexpression in several malignancies. Current research indicates that folate can be covalently attached to the surface of liposomes to mediate their selective internalization by tumor cells through the folate receptor-mediated endocytic pathway. Optimized liposome formulations, characterized by improvements in drug loading, extended residence times in the circulation and improved drug release, have been developed to improve the biodistribution of therapeutic molecules. Theoretically, folate receptor-targeting can be combined with liposome encapsulation to synergistically affect disease outcome by enhancing the delivery of chemotherapeutic agents to neoplastic cells, while reducing systemic toxicities to normal tissues. The purpose of this chapter is to characterize the components of folate receptor-targeted liposomes, and summarize their applications in gene and drug delivery.
Collapse
Affiliation(s)
- Michael A Gosselin
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
36
|
Liang F, Qi RZ, Chang CF. CD157 undergoes ligand-independent dimerization and colocalizes with caveolin in CHO and MCA102 fibroblasts. Cell Signal 2002; 14:933-9. [PMID: 12220619 DOI: 10.1016/s0898-6568(02)00040-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD157, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, has recently been shown to induce protein tyrosine phosphorylation in monocytes differentiated from HL-60 cells (mHL-60) in a ligand-dependent manner, but in a ligand-independent manner in stable CD157-transfected CHO (CHO/CD157) and MCA102 (MCA/CD157) fibroblasts [Cell Signal. 11 (1999) 891-897.]. Many GPI-anchored proteins need to be clustered by their ligands or antibodies to induce redistribution to caveolae and a concomitant activation of the associated signal-transducing proteins [Nature 387 (1997) 569-572.]. Here, we demonstrate that CD157, independent of antibody crosslinking, undergoes dimerization with disulfide bond formation and localization in caveolae in CHO/CD157 and MCA/CD157 fibroblasts. However, the native CD157 induced in mHL-60 cells remains a monomer form. The structural integrity of caveolae is required for the association of CD157 with caveolin and CD157-mediated tyrosine kinase signalling in the fibroblasts. We propose that an overexpression of CD157 could lead to its dimerization and relocation to caveolae and to further result in the initiation of signalling processes.
Collapse
Affiliation(s)
- Fubo Liang
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
37
|
Kim CH, Park YS, Chung KN, Elwood PC. Sorting and function of the human folate receptor is independent of the caveolin expression in Fisher rat thyroid epithelial cells. BMB Rep 2002; 35:395-402. [PMID: 12296999 DOI: 10.5483/bmbrep.2002.35.4.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fisher rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.
Collapse
Affiliation(s)
- Chong-Ho Kim
- Department of Clinical Pathology, Wonkwang Health Science College, Iksan 570-750, Korea.
| | | | | | | |
Collapse
|
38
|
Abstract
The receptor for folic acid constitutes a useful target for tumor-specific drug delivery, primarily because: (1) it is upregulated in many human cancers, including malignancies of the ovary, brain, kidney, breast, myeloid cells and lung, (2) access to the folate receptor in those normal tissues that express it can be severely limited due to its location on the apical (externally-facing) membrane of polarized epithelia, and (3) folate receptor density appears to increase as the stage/grade of the cancer worsens. Thus, cancers that are most difficult to treat by classical methods may be most easily targeted with folate-linked therapeutics. To exploit these peculiarities of folate receptor expression, folic acid has been linked to both low molecular weight drugs and macromolecular complexes as a means of targeting the attached molecules to malignant cells. Conjugation of folic acid to macromolecules has been shown to enhance their delivery to folate receptor-expressing cancer cells in vitro in almost all situations tested. Folate-mediated macromolecular targeting in vivo has, however, yielded only mixed results, largely because of problems with macromolecule penetration of solid tumors. Nevertheless, prominent examples do exist where folate targeting has significantly improved the outcome of a macromolecule-based therapy, leading to complete cures of established tumors in many cases. This review presents a brief mechanistic background of folate-targeted macromolecular therapeutics and then summarizes the successes and failures observed with each major application of the technology.
Collapse
Affiliation(s)
- Yingjuan Lu
- Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
39
|
Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 2002; 100:594-602. [PMID: 12091353 DOI: 10.1182/blood.v100.2.594] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Up-regulation of folate receptor (FR) type-beta in acute myelogenous leukemia (AML) by all-trans retinoic acid (ATRA) and its restricted normal tissue distribution makes it a potential target for therapeutic intervention. The FR-beta in peripheral blood granulocytes was unable to bind folate and appeared to have a variant GPI membrane anchor, evident from its insensitivity to phosphatidylinositol-specific phospholipase C but not nitrous acid. Granulocyte FR-beta lacked mutations, and neither deglycosylation nor detergent solubilization restored folate binding. The posttranslational modification causing its nonfunctionality was evidently absent in FR-beta from AML cells from patient marrow, which bound folate. From flow cytometric analysis of 78 AML bone marrow specimens of different subtypes, 68% expressed FR-beta, most of which were also CD34+. In model cell lines that are FR - (KG-1a, L1210, and Chinese hamster ovary [CHO]) or FR + (KG-1, L1210 JF, and recombinant CHO-FR-beta), selective FR-mediated binding and cytotoxicity was obtained using folate-coated liposomes encapsulating fluorescent calcein (f-L-calcein) and doxorubicin (f-L-DOX), respectively, which could be blocked by 1 mM free folic acid. In the FR-beta-expressing KG-1 human AML cells, treatment with ATRA further increased this specificity. In mouse ascites leukemia models generated using L1210JF or KG-1 cells, increased median survival times were obtained with f-L-DOX treatment compared to nontargeted L-DOX. In the KG-1 model, ATRA treatment increased the cure rate with f-L-DOX from 10% to 60%. The above combined data from our 2 laboratories further support the feasibility and potential usefulness of selective ATRA-facilitated liposomal drug delivery in FR-beta + AMLs.
Collapse
MESH Headings
- Animals
- Antigens, CD34/analysis
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Carrier Proteins/analysis
- Carrier Proteins/metabolism
- Cell Death/drug effects
- Disease Models, Animal
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Delivery Systems/methods
- Drug Evaluation, Preclinical
- Folate Receptors, GPI-Anchored
- Folic Acid/administration & dosage
- Folic Acid/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Liposomes/administration & dosage
- Mice
- Receptors, Cell Surface
- Survival Rate
- Therapeutic Equivalency
- Treatment Outcome
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- Xing Q Pan
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rajamannan NM, Springett MJ, Pederson LG, Carmichael SW. Localization of caveolin 1 in aortic valve endothelial cells using antigen retrieval. J Histochem Cytochem 2002; 50:617-28. [PMID: 11967273 PMCID: PMC3951858 DOI: 10.1177/002215540205000503] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrastructural analysis of aortic valve endothelial cells subjected to growth arrest revealed many vesicles defined as caveolae by the localization of caveolin. Translocation of caveolin after exposure to oxidized LDL suggests that the localization of caveolin may be a valuable tool to study models of early atherogenesis. In this study, several antigen retrieval protocols were tested in osmium-fixed and Spurr-embedded cells to determine the optimal method of antigen retrieval in our model system. SDS produced the most consistent labeling pattern. A quantitative evaluation revealed that SDS significantly increased the labeling density in Spurr-embedded cells. The labeling pattern appeared as clusters of gold particles, 15-40 nm in diameter, that were associated with membranes of a similar size which may represent the neck region of the caveolae.
Collapse
Affiliation(s)
- Nalini M Rajamannan
- Department of Cardiology and Cardiovascular Diseases, Mayo Foundation and Clinic, Rochester, Minnesota, USA.
| | | | | | | |
Collapse
|
41
|
Paquette CA, Rakochy V, Bush A, Van Houten JL. GLYCOPHOSPHATIDYLINOSITOL-ANCHORED PROTEINS INPARAMECIUM TETRAURELIA. J Exp Biol 2001; 204:2899-910. [PMID: 11683443 DOI: 10.1242/jeb.204.16.2899] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have begun to characterize the glycophosphatidylinositol (GPI)-anchored proteins of the Paramecium tetraurelia cell body surface where receptors and binding sites for attractant stimuli are found. We demonstrate here (i) that inositol-specific exogenous phospholipase C (PLC) treatment of the cell body membranes (pellicles) removes proteins with GPI anchors, (ii)that, as in P. primaurelia, there is an endogenous lipase that responds differently to PLC inhibitors compared with its response to an exogenous PLC, (iii) that salt and ethanol treatment of cells removes GPI-anchored proteins from whole, intact cells, (iv) that Triton X-114 phase partitioning shows that many GPI-anchored proteins are cleaved from pellicles by the endogenous lipase and enter the aqueous phase, and (v) that integral membrane proteins are not among those cleaved with PLC or in the salt/ethanol wash.Antisera against the proteins removed by the salt/ethanol washing procedure include antibodies against large surface antigens, which we confirm in this species to be GPI-anchored, and against an array of proteins of smaller molecular mass. These antisera specifically block the chemoresponse to some stimuli, such as folate, which we suggest are signaled through GPI-anchored receptors. Responses to cyclic AMP, which we believe involve an integral membrane protein receptor, and to NH4Cl, which requires no receptor, are not affected by the antisera. Antiserum against a mammalian GPI-anchored folate-binding protein recognizes a single band among the GPI-anchored salt and ethanol wash proteins. The same antiserum specifically blocks the chemoresponse to folate.
Collapse
Affiliation(s)
- C A Paquette
- University of Vermont, Department of Biology, Burlington 05405, USA
| | | | | | | |
Collapse
|
42
|
Bridges CC, El-Sherbeny A, Roon P, Ola MS, Kekuda R, Ganapathy V, Camero RS, Cameron PL, Smith SB. A comparison of caveolae and caveolin-1 to folate receptor alpha in retina and retinal pigment epithelium. THE HISTOCHEMICAL JOURNAL 2001; 33:149-58. [PMID: 11508338 PMCID: PMC4638127 DOI: 10.1023/a:1017991925821] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor alpha and participate in folate uptake. Our laboratory has recently localized folate receptor alpha to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor alpha. We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor alpha. Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor alpha. This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE.
Collapse
Affiliation(s)
- C C Bridges
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000; 43:101-64. [PMID: 10967224 DOI: 10.1016/s0169-409x(00)00067-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Targeted drug delivery has gained recognition in modern therapeutics and attempts are being made to explore the potentials and possibilities of cell biology related bioevents in the development of specific, programmed and target oriented systems. The components which have been recognized to be tools include receptors and ligands, where the receptors act as molecular targets or portals, and ligands, with receptor specificity and selectivity, are trafficked en route to the target site. Although ligands of exogenous or synthetic origin contribute to the selectivity component of carrier constructs, they may impose immunological manifestations of different magnitudes. The latter may entail a continual quest for bio-compatible, non-immunogenic and target orientated delivery. Endogenous serum, cellular and extracellular bio-ligands interact with the colloidal carrier constructs and influence their bio-fate. However, these endogenous bio-ligands can themselves serve as targeting modules either in their native form or engineered as carrier cargo. Bio-regulatory, nutrient and immune ligands are sensitive, specific and effective site directing handles which add to targeted drug delivery. The present review provides an exhaustive account of the identified bio-ligands, which are not only non-immunogenic in nature but also site-specific. The cell-related bioevents which are instrumental in negotiating the uptake of bio-ligands are discussed. Further, a brief account of ligand-receptor interactions and the set of biological events which ensures ligand-driven trafficking of the ligand-receptor complex to the cellular interior is also presented. Since ligand-receptor interaction is a critical pre-requisite for negotiating cellular uptake of endogenous ligands and anchored carrier cargo, an attempt has been made to identify differential expression of receptors and bio-ligands under normal and etiological conditions. Studies which judiciously utilized bio-ligands or their analogs in negotiating site-specific drug delivery have been reviewed and presented. Targeted delivery of bioactives using endogenous bio-ligands offers enormous options and opportunities through carrier construct engineering and could become a future reality in clinical practice.
Collapse
Affiliation(s)
- S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H.S. Gour Vishwavidyalaya, M.P. 470003, Sagar, India.
| | | |
Collapse
|
44
|
Goodfellow IG, Powell RM, Ward T, Spiller OB, Almond JW, Evans DJ. Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J Gen Virol 2000; 81:1393-401. [PMID: 10769083 DOI: 10.1099/0022-1317-81-5-1393] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of echoviruses use decay accelerating factor (DAF) as a cellular receptor or attachment protein for cell infection. Binding of echovirus 7 to DAF at the cell surface, but not to soluble DAF in solution, triggers the formation of virus particles exhibiting an altered sedimentation coefficient ('A' particles) which are considered indicative of the particle uncoating process. We have previously demonstrated that antibodies to beta(2)-microglobulin block cell infection at a stage prior to 'A' particle formation and suggested that this reflects the involvement of beta(2)-microglobulin (or the associated MHC-I) in a virus-receptor complex that forms at the cell surface. We demonstrate here that antiserum to CD59 specifically blocks infection of rhabdomyosarcoma cells by a range of echoviruses, including viruses that bind DAF (e. g. echovirus 7) and those that use currently unidentified receptors other than DAF. The block occurs prior to 'A' particle formation and is cell-type specific. The potential role of CD59 as an active member, or passive participant, in the virus-receptor complex is discussed.
Collapse
Affiliation(s)
- I G Goodfellow
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | | | | | | | | | |
Collapse
|
45
|
Kenworthy AK, Petranova N, Edidin M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 2000; 11:1645-55. [PMID: 10793141 PMCID: PMC14873 DOI: 10.1091/mbc.11.5.1645] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.
Collapse
Affiliation(s)
- A K Kenworthy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
46
|
Nolan DP, Jackson DG, Biggs MJ, Brabazon ED, Pays A, Van Laethem F, Paturiaux-Hanocq F, Elliott JF, Elliot JF, Voorheis HP, Pays E. Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. J Biol Chem 2000; 275:4072-80. [PMID: 10660566 DOI: 10.1074/jbc.275.6.4072] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterologous expression in COS cells followed by orientation-specific polymerase chain reaction to select and amplify cDNAs encoding surface proteins in Trypanosoma brucei resulted in the isolation of a cDNA ( approximately 1.4 kilobase) which encodes an acidic, alanine-rich polypeptide that is expressed only in bloodstream forms of the parasite and has been termed bloodstream stage alanine-rich protein (BARP). Analysis of the amino acid sequence predicted the presence of a typical NH(2)-terminal leader sequence as well as a COOH-terminal hydrophobic extension with the potential to be replaced by a glycosylphosphatidylinositol anchor. A search of existing protein sequences revealed partial homology between BARP and the major surface antigen of procyclic forms of Trypanosoma congolense. BARP migrated as a complex, heterogeneous series of bands on Western blots with an apparent molecular mass ( approximately 50-70 kDa) significantly higher than predicted from the amino acid sequence ( approximately 26 kDa). Confocal microscopy demonstrated that BARP was present in small discrete spots that were distributed over the entire cellular surface. Detergent extraction experiments revealed that BARP was recovered in the detergent-insoluble, glycolipid-enriched fraction. These data suggested that BARP may be sequestered in lipid rafts.
Collapse
Affiliation(s)
- D P Nolan
- Laboratory of Molecular Parasitology, Universite Libre de Bruxelles Institute of Molecular Biology and Medicine, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Glycosphingolipid- and cholesterol-enriched microdomains, or rafts, within the plasma membrane of eukaryotic cells have been implicated in many important cellular processes, such as polarized sorting of apical membrane proteins in epithelial cells and signal transduction. Until recently, however, the existence of such domains remained controversial. The past year has brought compelling evidence that microdomains indeed exist in living cells. In addition, several recent papers have suggested that caveolae, which are considered to be a specific form of raft, and caveolins, the major membrane proteins of caveolae, are involved in the dynamic cholesterol-dependent regulation of specific signal transduction pathways.
Collapse
Affiliation(s)
- T V Kurzchalia
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| | | |
Collapse
|
48
|
Abstract
AbstractWe have investigated the expression and functional competence of folate receptor (FR) isoforms on human hematopoietic cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) methodology, we find that a substantial fraction of low-density mononuclear and CD34+ cells express both the β and γ isoforms of FR. The isoform of FR (the form most commonly found on cancer cells) was surprisingly absent from all hematopoietic cells examined. Compared with KB cells (a human cell line known for its elevated expression of FR-), the abundance of FR-β on CD34+ cell surfaces was relatively low (≈8% of KB cell levels). Because many antifolates and folic acid-linked chemotherapeutic agents enter malignant cells at least partially via FR endocytosis, it was important to evaluate the ability of FR on CD34+ cells to bind folic acid (FA). Based on three FR binding assays, freshly isolated CD34+ cells were found to display no affinity for FA. Thus, regardless of whether steps were taken to remove endogenous folates before receptor binding assays, FR on primitive hematopoietic cells failed to bind 3H-FA, fluorescein isothiocyanate (FITC)-linked FA, or FA-derivatized liposomes. In contrast, analogous studies on KB cells showed high levels of receptor binding for all three FR probes. These studies show that although multipotent hematopoietic progenitor cells express FR, the receptor does not transport significant amounts of FA. Consequently, antifolates and FA-linked chemotherapeutic agents that can be engineered to enter malignant cells exclusively through the FR should not harm progenitor/stem cell function.
Collapse
|
49
|
Abstract
We have investigated the expression and functional competence of folate receptor (FR) isoforms on human hematopoietic cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) methodology, we find that a substantial fraction of low-density mononuclear and CD34+ cells express both the β and γ isoforms of FR. The isoform of FR (the form most commonly found on cancer cells) was surprisingly absent from all hematopoietic cells examined. Compared with KB cells (a human cell line known for its elevated expression of FR-), the abundance of FR-β on CD34+ cell surfaces was relatively low (≈8% of KB cell levels). Because many antifolates and folic acid-linked chemotherapeutic agents enter malignant cells at least partially via FR endocytosis, it was important to evaluate the ability of FR on CD34+ cells to bind folic acid (FA). Based on three FR binding assays, freshly isolated CD34+ cells were found to display no affinity for FA. Thus, regardless of whether steps were taken to remove endogenous folates before receptor binding assays, FR on primitive hematopoietic cells failed to bind 3H-FA, fluorescein isothiocyanate (FITC)-linked FA, or FA-derivatized liposomes. In contrast, analogous studies on KB cells showed high levels of receptor binding for all three FR probes. These studies show that although multipotent hematopoietic progenitor cells express FR, the receptor does not transport significant amounts of FA. Consequently, antifolates and FA-linked chemotherapeutic agents that can be engineered to enter malignant cells exclusively through the FR should not harm progenitor/stem cell function.
Collapse
|
50
|
Maziarz KM, Monaco HL, Shen F, Ratnam M. Complete mapping of divergent amino acids responsible for differential ligand binding of folate receptors alpha and beta. J Biol Chem 1999; 274:11086-91. [PMID: 10196192 DOI: 10.1074/jbc.274.16.11086] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folate receptor (FR) type alpha may be distinguished from FR-beta by its higher affinity for the circulating folate coenzyme, (6S)-5-methyltetrahydrofolate (5-CH3H4folate), and its opposite stereospecificity for reduced folate coenzymes. Previous studies showed that a single leucine to alanine substitution at position 49 of the mature protein sequence is responsible for the functional divergence of FR-beta (Shen, F., Zheng, X., Wang, H., and Ratnam, M. (1997) Biochemistry 36, 6157-6163); however, the results also indicated that the minimum requirement for conversion of FR-beta to the functional equivalent of FR-alpha should include amino acid substitution(s) downstream of residue 92 in addition to mutation of L49A. To pinpoint those residues, chimeric FR-betaL49A/FR-alpha constructs including progressively shorter segments of FR-alpha downstream of position 92 as well as selected point mutants were studied. Simultaneous substitution of Leu-49, Phe-104, and Gly-166 in FR-beta with the corresponding FR-alpha residues Ala, Val, and Glu, respectively, reconstituted the ligand binding characteristics of FR-alpha. The results also exclude a role for other residues in FR-alpha in determining its functional divergence. A homology model of FR-alpha based on the three-dimensional structure of the chicken riboflavin-binding protein is used to show the position of residues 49, 104, and 166 in relation to the hydrophobic cleft corresponding to the riboflavin-binding pocket.
Collapse
Affiliation(s)
- K M Maziarz
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, Ohio 43614-5804, USA
| | | | | | | |
Collapse
|