1
|
Abstract
Wilson's disease patients with neurological symptoms have motor symptoms and cognitive deficits, including frontal executive, visuospatial processing, and memory impairments. Although the brain structural abnormalities associated with Wilson's disease have been documented, it remains largely unknown how Wilson's disease affects large-scale functional brain networks. In this study, we investigated functional brain networks in Wilson's disease. Particularly, we analyzed resting state functional magnetic resonance images of 30 Wilson's disease patients and 26 healthy controls. First, functional brain networks for each participant were extracted using an independent component analysis method. Then, a computationally efficient pattern classification method was developed to identify discriminative brain functional networks associated with Wilson's disease. Experimental results indicated that Wilson's disease patients, compared with healthy controls, had altered large-scale functional brain networks, including the dorsal anterior cingulate cortex and basal ganglia network, the middle frontal gyrus, the dorsal striatum, the inferior parietal lobule, the precuneus, the temporal pole, and the posterior lobe of cerebellum. Classification models built upon these networks distinguished between neurological WD patients and HCs with accuracy up to 86.9% (specificity: 86.7%, sensitivity: 89.7%). The classification scores were correlated with the United Wilson's Disease Rating Scale measures and durations of disease of the patients. These results suggest that Wilson's disease patients have multiple aberrant brain functional networks, and classification scores derived from these networks are associated with severity of clinical symptoms.
Collapse
|
2
|
Dusek P, Litwin T, Członkowska A. Neurologic impairment in Wilson disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S64. [PMID: 31179301 DOI: 10.21037/atm.2019.02.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurologic symptoms in Wilson disease (WD) appear at an older age compared to hepatic symptoms and manifest in patients with misdiagnosed liver disease, in patients when the hepatic stage is clinically silent, in the case of non-compliance with anti-copper treatment, or with treatment failure. Neurologic symptoms in WD are caused by nervous tissue damage that is primarily a consequence of extrahepatic copper toxicity. Copper levels in brain tissues as well as cerebrospinal fluid (CSF) are diffusely increased by a factor of 10 and its toxicity involves various mechanisms such as mitochondrial toxicity, oxidative stress, cell membrane damage, crosslinking of DNA, and inhibition of enzymes. Excess copper is initially taken-up and buffered by astrocytes and oligodendrocytes but ultimately causes dysfunction of blood-brain-barrier and demyelination. Most severe neuropathologic abnormalities, including tissue rarefaction, reactive astrogliosis, myelin palor, and presence of iron-laden macrophages, are typically present in the putamen while other basal ganglia, thalami, and brainstem are usually less affected. The most common neurologic symptoms of WD are movement disorders including tremor, dystonia, parkinsonism, ataxia and chorea which are associated with dysphagia, dysarthria and drooling. Patients usually manifest with various combinations of these symptoms while purely monosymptomatic presentation is rare. Neurologic symptoms are largely reversible with anti-copper treatment, but a significant number of patients are left with residual impairment. The approach for symptomatic treatment in WD is based on guidelines for management of common movement disorders. The vast majority of WD patients with neurologic symptoms have abnormalities on brain magnetic resonance imaging (MRI). Pathologic MRI changes include T2 hyperintensities in the basal ganglia, thalami and white matter, T2 hypointensities in the basal ganglia, and atrophy. Most importantly, brain damage and neurologic symptoms can be prevented with an early initiation of anti-copper treatment. Introducing population WD screening, e.g., by exome sequencing genetic methods, would allow early treatment and decrease the neurologic burden of WD.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia.,Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
3
|
Han Y, Cheng H, Toledo JB, Wang X, Li B, Han Y, Wang K, Fan Y. Impaired functional default mode network in patients with mild neurological Wilson's disease. Parkinsonism Relat Disord 2016; 30:46-51. [PMID: 27372239 DOI: 10.1016/j.parkreldis.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Wilson's disease (WD) is an autosomal recessive metabolic disorder characterized by cognitive, psychiatric and motor signs and symptoms that are associated with structural and pathological brain abnormalities, in addition to liver changes. However, functional brain connectivity pattern of WD patients remains largely unknown. In the present study, we investigated functional brain connectivity pattern of WD patients using resting state functional magnetic resonance imaging. Particularly, we studied default mode network (DMN) using posterior cingulate cortex (PCC) based seed functional connectivity analysis and graph theoretic functional brain network analysis tools, and investigated the relationship between the DMN's functional connectivity pattern of WD patients and their attention functions examined using the attention network test (ANT). Our results demonstrated that WD patients had altered DMN's functional connectivity and lower local and global network efficiency compared with normal controls (NCs). In addition, the functional connectivity between left inferior temporal cortex and right lateral parietal cortex was correlated with altering function, one of the attention functions, across WD and NC subjects. These findings indicated that the DMN's functional connectivity was altered in WD patients, which might be correlated with their attention dysfunction.
Collapse
Affiliation(s)
- Yongsheng Han
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Hewei Cheng
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Jon B Toledo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xun Wang
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Bo Li
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Yongzhu Han
- Institute of Neurology, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z. 1H NMR-based metabolomics investigation of copper-laden rat: a model of Wilson's disease. PLoS One 2015; 10:e0119654. [PMID: 25849323 PMCID: PMC4388371 DOI: 10.1371/journal.pone.0119654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established. MATERIALS AND METHODS A combination of 1HNMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the urine and blood serum samples collected from the copper-laden rat model of WD with PA treatment. RESULTS Copper accumulation in the copper-laden rats is associated with increased lactate, creatinine, valine and leucine, as well as decreased levels of glucose and taurine in the blood serum. There were also significant changes in p-hydroxyphenylacetate (p-HPA), creatinine, alpha-ketoglutarate (α-KG), dimethylamine, N-acetylglutamate (NAG), N-acetylglycoprotein (NAC) in the urine of these rats. Notably, the changes in p-HPA, glucose, lactate, taurine, valine, leucine, and NAG were found reversed following PA treatment. Nevertheless, there were no changes for dimethylamine, α-KG, and NAC as a result of the treatment. Compared with the controls, the concentrations of hippurate, formate, alanine, and lactate were changed when PA was applied and this is probably due to its side effect. A tool named SMPDB (Small Molecule Pathway Database) is introduced to identify the metabolic pathway influenced by the copper-laden diet. CONCLUSION The study has shown the potential application of NMR-based metabolomic analysis in providing further insights into the molecular mechanism underlying disorder due to WD.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, P. R. China
| | - Huaizhou Jiang
- Anhui University of Chinese Medicine, Hefei, 230031, P. R. China
| | - Jinquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, P. R. China
| | - Kian-Kai Cheng
- Department of Bioprocess Engineering & Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Jiyang Dong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Huang YCK, Huang TY, Chiu HC, Kuo TS, Hsueh CJ, Kao HW, Wang CW, Hsu HH, Juan CJ. Transition into driven equilibrium of the balanced steady-state free precession as an ultrafast multisection T2-weighted imaging of the brain. AJNR Am J Neuroradiol 2014; 35:1137-44. [PMID: 24722304 DOI: 10.3174/ajnr.a3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Current T2-weighted imaging takes >3 minutes to perform, for which the ultrafast transition into driven equilibrium (TIDE) technique may be potentially helpful. This study qualitatively and quantitatively evaluates the imaging of transition into driven equilibrium of the balanced steady-state free precession (TIDE) compared with TSE and turbo gradient spin-echo on T2-weighted MR images. MATERIALS AND METHODS Thirty healthy volunteers were examined with T2-weighted images by using TIDE, TSE, and turbo gradient spin-echo sequences. Imaging was evaluated qualitatively by 2 independent observers on the basis of a 4-point rating scale regarding contrast characteristics and artifacts behavior. Image SNR and contrast-to-noise ratio were quantitatively assessed. RESULTS TIDE provided T2-weighted contrast similar to that in TSE and turbo gradient spin-echo with only one-eighth of the scan time. TIDE showed gray-white matter differentiation and iron-load sensitivity inferior that of TSE and turbo gradient spin-echo, but with improved motion artifacts reduction on qualitative scores. Nonmotion ghosting artifacts were uniquely found in TIDE images. The overall SNRs of TSE were 1.9-2.0 times those of turbo gradient spin-echo and 1.7-2.2 times of those of TIDE for brain tissue (P < .0001). TIDE had a higher contrast-to-noise ratio than TSE (P = .169) and turbo gradient spin-echo (P < .0001) regarding non-iron-containing gray matter versus white matter. TIDE had a lower contrast-to-noise ratio than turbo gradient spin-echo and TSE (P < .0001) between iron-containing gray matter and white matter. CONCLUSIONS TIDE provides T2-weighted images with reduced scan times and reduced motion artifacts compared with TSE and turbo gradient spin-echo with the trade-off of reduced SNR and poorer gray-white matter differentiation.
Collapse
Affiliation(s)
- Y-C K Huang
- From the Department of Electrical Engineering (Y.-C.K.H., T.-S.K.), National Taiwan University, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - T-Y Huang
- Department of Electrical Engineering (T.-Y.H.), National Taiwan University of Science and Technology, Taiwan, Republic of China
| | - H-C Chiu
- Graduate Institute of Design Science (H.-C.C.), Tatung University, Taipei, Taiwan, Republic of China
| | - T-S Kuo
- From the Department of Electrical Engineering (Y.-C.K.H., T.-S.K.), National Taiwan University, Taipei, Taiwan, Republic of China
| | - C-J Hsueh
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - H-W Kao
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - C-W Wang
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - H-H Hsu
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - C-J Juan
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Pal A, Prasad R. Recent discoveries on the functions of astrocytes in the copper homeostasis of the brain: a brief update. Neurotox Res 2014; 26:78-84. [PMID: 24385258 DOI: 10.1007/s12640-013-9453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023]
Abstract
In the last two decades, there has been widespread acknowledgment of the pivotal role played by astrocytes in diverse aspects of central nervous system functioning. Astrocytes are crucial for the homeostasis of the copper in the central nervous system as evident by its proficiency in acquisition, trafficking, and export of copper. Moreover, the imbalance in copper homeostasis and impairment in astrocyte functioning are increasingly being recognized as an important contributing factor in the development of neurodegeneration and cognitive waning. In this review, we discuss the most recent advances in the field of copper homeostasis in astrocytes along with briefly outlining the copper dyshomeostasis associated hepatocerebral and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, P.G.I.M.E.R, Chandigarh, 160012, India
| | | |
Collapse
|
7
|
Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2012; 62:556-65. [PMID: 22982300 DOI: 10.1016/j.neuint.2012.08.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency but also excess of copper can seriously affect cellular functions, the cellular copper metabolism is tightly regulated. In brain, astrocytes appear to play a pivotal role in the copper metabolism. With their strategically important localization between capillary endothelial cells and neuronal structures they are ideally positioned to transport copper from the blood-brain barrier to parenchymal brain cells. Accordingly, astrocytes have the capacity to efficiently take up, store and to export copper. Cultured astrocytes appear to be remarkably resistant against copper-induced toxicity. However, copper exposure can lead to profound alterations in the metabolism of these cells. This article will summarize the current knowledge on the copper metabolism of astrocytes, will describe copper-induced alterations in the glucose and glutathione metabolism of astrocytes and will address the potential role of astrocytes in the copper metabolism of the brain in diseases that have been connected with disturbances in brain copper homeostasis.
Collapse
Affiliation(s)
- Ivo F Scheiber
- Center for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | | |
Collapse
|
8
|
Algin O, Taskapilioglu O, Hakyemez B, Ocakoglu G, Yurtogullari S, Erer S, Parlak M. Structural and neurochemical evaluation of the brain and pons in patients with Wilson’s disease. Jpn J Radiol 2010; 28:663-71. [DOI: 10.1007/s11604-010-0491-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/11/2010] [Indexed: 10/18/2022]
|
9
|
Wilson’s disease: two treatment modalities. Correlations to pretreatment and posttreatment brain MRI. Neuroradiology 2009; 51:627-33. [DOI: 10.1007/s00234-009-0536-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
|
10
|
Sinha S, Taly AB, Ravishankar S, Prashanth LK, Venugopal KS, Arunodaya GR, Vasudev MK, Swamy HS. Wilson’s disease: cranial MRI observations and clinical correlation. Neuroradiology 2006; 48:613-21. [PMID: 16752136 DOI: 10.1007/s00234-006-0101-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/10/2006] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Study of MRI changes may be useful in diagnosis, prognosis and better understanding of the pathophysiology of Wilson's disease (WD). We aimed to describe and correlate the MRI abnormalities of the brain with clinical features in WD. METHODS MRI evaluation was carried out in 100 patients (57 males, 43 females; mean age 19.3+/-8.9 years) using standard protocols. All but 18 patients were on de-coppering agents. Their history, clinical manifestations and scores for severity of disease were noted. RESULTS The mean duration of illness and treatment were 8.3+/-10.8 years and 7.5+/-7.1 years respectively. MRI of the brain was abnormal in all the 93 symptomatic patients. The most conspicuous observations were atrophy of the cerebrum (70%), brainstem (66%) and cerebellum (52%). Signal abnormalities were also noted: putamen (72%), caudate (61%), thalami (58%), midbrain (49%), pons (20%), cerebral white matter (25%), cortex (9%), medulla (12%) and cerebellum (10%). The characteristic T2-W globus pallidal hypointensity (34%), "Face of giant panda" sign (12%), T1-W striatal hyperintensity (6%), central pontine myelinosis (7%), and bright claustral sign (4%) were also detected. MRI changes correlated with disease severity scores (P<0.001) but did not correlate with the duration of illness. CONCLUSION MRI changes were universal but diverse and involved almost all the structures of the brain in symptomatic patients. A fair correlation between MRI observations and various clinical features provides an explanation for the protean manifestations of the disease.
Collapse
Affiliation(s)
- S Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | | | | | | | | | | | | | | |
Collapse
|