1
|
Goursaud S, Martinez de Lizarrondo S, Grolleau F, Chagnot A, Agin V, Maubert E, Gauberti M, Vivien D, Ali C, Gakuba C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Is There a Relevant Experimental Model? A Systematic Review of Preclinical Literature. Front Cardiovasc Med 2021; 8:752769. [PMID: 34869659 PMCID: PMC8634441 DOI: 10.3389/fcvm.2021.752769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Caen, France.,Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - François Grolleau
- Centre d'Epidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Clément Gakuba
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU de Caen Normandie, Service d'Anesthésie-Réanimation Chirurgicale, Caen, France
| |
Collapse
|
2
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Experimental Subarachnoid Hemorrhage: Double Cisterna Magna Injection Rat Model—Assessment of Delayed Pathological Effects of Cerebral Vasospasm. Transl Stroke Res 2015; 6:242-51. [DOI: 10.1007/s12975-015-0392-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
|
4
|
Güresir E, Schuss P, Borger V, Vatter H. Rat cisterna magna double-injection model of subarachnoid hemorrhage - background, advantages/limitations, technical considerations, modifications, and outcome measures. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:325-9. [PMID: 25366646 DOI: 10.1007/978-3-319-04981-6_56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pathophysiological changes following aneurysmal subarachnoid hemorrhage (SAH) are commonly divided into early consequences (developing shortly after the bleeding) and delayed consequences of the bleeding. The development of delayed injury mechanisms, e.g., reduced cerebral blood flow (CBF) caused by cerebral vasospasm (CVS) or development of delayed ischemic neurological deficits (DIND), seem mainly to depend on the amount and duration of the subarachnoid blood clot. CVS may progress to cerebral ischemia and infarction, and therefore lead to delayed neurological deterioration. The rat double-hemorrhage model reproduces the time course of the delayed pathophysiological consequences of CVS, which imitates the clinical setting more precisely than other rodent models. Furthermore, this model is adjustable via various technical considerations or modifications. Therefore, the double-hemorrhage model is predisposed to be used to mimic the delayed effects of SAH and to investigate the use of drugs on morphological ischemic, functional, and vasospastic effects.
Collapse
Affiliation(s)
- Erdem Güresir
- Department of Neurosurgery, University-Hospital Bonn, Sigmund-Freud-Strasse, 53127, Bonn, Germany,
| | | | | | | |
Collapse
|
5
|
Wellman GC, Koide M. Impact of subarachnoid hemorrhage on parenchymal arteriolar function. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:173-7. [PMID: 22890665 PMCID: PMC3703753 DOI: 10.1007/978-3-7091-1192-5_33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Intracerebral or parenchymal arterioles play an important role in the regulation of both global and regional blood flow within the brain. Brain cortex lacks significant collateral sources of blood and thus is at risk if blood flow through parenchymal arterioles is restricted. Increasingly, evidence is accumulating that abnormal parenchymal arteriolar constriction contributes to the development of neurological deficits caused by subarachnoid hemorrhage (SAH). For example, parenchymal arterioles isolated from SAH model rats exhibit enhanced constriction in response to increased intravascular pressure. This increased pressure-dependent constriction or myogenic tone would result in a shift in the cerebral autoregulatory response and decreased cerebral perfusion. Here, we summarize our current knowledge regarding cellular mechanisms contributing to enhanced contractility of parenchymal arteriolar myocytes following SAH. Our studies demonstrated that SAH-induced membrane potential depolarization involving altered K(+) homeostasis leads to enhanced voltage-dependent Ca(2+) channel activity, increased smooth muscle cytosolic Ca(2+), and parenchymal arteriolar constriction. In summary, emerging evidence demonstrates that SAH can profoundly affect parenchymal arteriolar tone, promoting decreased cortical blood flow and compromised neuronal viability.
Collapse
|
6
|
Kreis D, Schulz D, Stein M, Preuss M, Nestler U. Assessment of parameters influencing the blood flow velocities in cerebral arteries of the rat using ultrasonographic examination. Neurol Res 2012; 33:389-95. [PMID: 21535938 DOI: 10.1179/1743132810y.0000000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Rat models of cerebrovascular diseases are used for a variety of human pathologies comprising ischemic stroke or subarachnoid hemorrhage. Whereas in neuro-intensive care, Doppler ultrasonographic examination of major cerebral arteries is a common diagnostic tool, only few data exist concerning the animal model. We therefore studied cerebral blood flow velocities in the rat by ultrasonographic triplex mode. METHODS Female Wistar rats underwent a large craniectomy and baseline values for blood flow velocities were obtained by 399 examinations in 52 animals. Vessel diameters were assessed by 301 examinations in 39 animals. Finally, in 26 animals, continuous measurements of blood flow velocities were performed. For a duration of more than 30 minutes, values in the anterior trunk, the left carotid artery and the basilar artery were obtained every 60-90 seconds with simultaneous detection of heart rate. RESULTS Blood flow velocities in the anterior part of cerebral circulation were faster than those in the posterior part and showed higher standard deviation. Flow velocities in arteries belonging to the anterior circulation changed in relation to carotid flow velocity and heart rate, whereas the velocity in the basilar artery showed much lower correlation to carotid flow velocity or heart rate. DISCUSSION Ultrasonographic triplex mode examination of cerebral vessels offers a reproducible method to study rat cerebral blood flow velocities and vessel diameters. In combination with monitoring of systemic hemodynamic parameters, it can provide a detailed description of the vascular response to drugs, experimental stroke or subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Dorothee Kreis
- Department of Neurosurgery, Justus Liebig University, Giessen, Germany
| | | | | | | | | |
Collapse
|
7
|
Buhalog A, Yasuda R, Consigny D, Maurer K, Strother CM. A method for serial selective arterial catheterization and digital subtraction angiography in rodents. AJNR Am J Neuroradiol 2010; 31:1508-11. [PMID: 20488903 DOI: 10.3174/ajnr.a2134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Imaging is a key element in the study of many rodent models of human diseases. The application of DSA has been limited in these studies in part because of a lack of a method that allows serial intra-arterial examinations to be performed during an extended period of time. It was our intent to develop and test a method for performing sequential arterial catheterizations and DSA in rats. MATERIALS AND METHODS Using a transfemoral approach, we subjected 12 adult male Harvey rats to 3 sequential DSA examinations during a 6- to 8-week period. At each examination, 2 selective arterial catheterizations and a DSA were performed. Animals were monitored for ill effects, and images from the 3 examinations were compared for quality and the presence of any arterial injury. RESULTS Ten of the 12 rats survived all 3 examinations. There were no adverse effects noted and no evidence of arterial injury from the examinations. CONCLUSIONS With the technique described, it is possible to perform serial arterial catheterizations and DSA in rats. This technique will be useful as an adjunct in the use of rodents for the study of human diseases.
Collapse
Affiliation(s)
- A Buhalog
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
8
|
A new approach to the treatment of cerebral vasospasm: the angiographic effects of tadalafil on experimental vasospasm. Acta Neurochir (Wien) 2010; 152:463-9. [PMID: 19841856 DOI: 10.1007/s00701-009-0540-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The pathogenesis of cerebral vasospasm is likely to be multifactorial. Strong evidence has indicated that decreasing levels of NO after SAH seem to be important. A PDE-V inhibitor, tadalafil, theoretically increases NO levels. Our study investigated the vasodilatory efficacy of tadalafil on the cerebral arteries with measurement of basilar artery diameters on angiography. METHODS We used 42 male Wistar-Albino rats to test our hypothesis. They were assigned randomly into the following seven groups: group 1: control (only saline), group 2: SAH only (killed on day 2), group 3: SAH + tadalafil (killed on day 2), group 4: SAH only (killed on day 4), group 5: SAH + tadalafil (killed on day 4), group 6: saline + tadalafil (killed on day 2) and group 7: saline + tadalafil (killed on day 4). The three different parts of basilar artery diameters were measured angiographically. RESULTS There were statistically significant differences between the SAH and SAH groups treated with tadalafil at days 2 and 4. Comparison between control and tadalafil groups showed no significant differences. This result indicated that tadalafil has a vasodilatory effect on vasoconstricted arteries, but no effect on normal basilar arteries. CONCLUSION Our study results showed that tadalafil has a vasodilatory effect on both acute and chronic periods of cerebral vasospasm. We also concluded that cerebral angiography can be used safely for investigation of cerebral vasospasm in animal studies.
Collapse
|
9
|
Yang YM, Feng X, Yao ZW, Tang WJ, Liu HQ, Zhang L. Magnetic resonance angiography of carotid and cerebral arterial occlusion in rats using a clinical scanner. J Neurosci Methods 2007; 167:176-83. [PMID: 17889370 DOI: 10.1016/j.jneumeth.2007.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
In rat models to induce both focal cerebral ischemia and chronic cerebral hypoperfusion, it is highly desirable to verify the success of vessel occlusion and reopening with non-invasive method. The contrast-agent free 3D time-of-flight magnetic resonance angiography (TOF-MRA), diffusion-weighted imaging (DWI) and T2-weighted imaging by 3.0-T MR clinical scanner were applied when unilateral middle cerebral artery (MCA) was occluded and reopened, and after bilateral common carotid arteries were in ligation. The arterial angiograms of the rat brain and neck were achieved successfully in all chosen directions by the 3D TOF-MRA. It was shown that MCA in occlusion presented no signal in MRA, and the parenchyma of the ipsilateral MCA territory hypointensity signal in maps of apparent diffusion coefficient (ADC). After reperfusion, the signal intensity of ipsilateral MCA was resumed in MRA, and the decreased ADC was restored simultaneously. However, after 5h of reperfusion, it was found that the value of ADC deteriorated second time with high T2 value. In bilateral common carotid artery occlusion (BCCAO) rats, it can be confirmed by MRA that the effectively occluded BCCA presented the absent signal and the basilar artery became tortuous. As a result, MRA by clinical scanner was proved of a valuable method to validate transient middle cerebral artery occlusion (MCAO) and permanent BCCAO rat model.
Collapse
Affiliation(s)
- Yan Mei Yang
- Department of Radiology, HuaShan Hospital of FuDan University, 12 Wulumuqi Zhong Road, ShangHai 200040, China
| | | | | | | | | | | |
Collapse
|