1
|
Tanaka M, Osada T, Ogawa A, Kamagata K, Aoki S, Konishi S. Dissociable Networks of the Lateral/Medial Mammillary Body in the Human Brain. Front Hum Neurosci 2020; 14:228. [PMID: 32625073 PMCID: PMC7316159 DOI: 10.3389/fnhum.2020.00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
The mammillary body (MB) has been thought to implement mnemonic functions. Although recent animal studies have revealed dissociable roles of the lateral and medial parts of the MB, the dissociable roles of the lateral/medial MB in the human brain is still unclear. Functional connectivity using resting-state functional magnetic resonance imaging (fMRI) provides a unique opportunity to noninvasively inspect the intricate functional organization of the human MB with a high degree of spatial resolution. The present study divided the human MB into lateral and medial parts and examined their functional connectivity with the hippocampal formation, tegmental nuclei, and anterior thalamus. The subiculum of the hippocampal formation was more strongly connected with the medial part than with the lateral part of the MB, whereas the pre/parasubiculum was more strongly connected with the lateral part than with the medial part of the MB. The dorsal tegmental nucleus was connected more strongly with the lateral part of the MB, whereas the ventral tegmental nucleus showed an opposite pattern. The anterior thalamus was connected more strongly with the medial part of the MB. These results confirm the extant animal literature on the lateral/medial MB and provide evidence on the parallel but dissociable systems involving the MB that ascribe mnemonic and spatial-navigation functions to the medial and lateral MBs, respectively.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University School of Medicine, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Balak N. In Reply to “Joy of Learning: Mammilotegmental Tract Connecting 2 Circuits of Memory and Pleasure in Brain”. World Neurosurg 2018; 118:389-390. [DOI: 10.1016/j.wneu.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
|
3
|
Mammillothalamic and Mammillotegmental Tracts as New Targets for Dementia and Epilepsy Treatment. World Neurosurg 2017; 110:133-144. [PMID: 29129763 DOI: 10.1016/j.wneu.2017.10.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recently, neuromodulation through deep brain stimulation (DBS) has appeared as a new surgical procedure in the treatment of some types of dementia and epilepsy. The mammillothalamic and mammillotegmental tracts are involved among the new targets. To our knowledge, a review article focused specifically on these mammillary body efferents is lacking in the medical literature. Their contribution to memory is, regrettably, often overlooked. METHODS A review of the relevant literature was conducted. RESULTS There is evidence that mammillary bodies can contribute to memory independently from hippocampal formation, but the mechanism is not yet known. Recent studies in animals have provided evidence for the specific roles of these mammillary body efferents in regulating memory independently. In animal studies, it has been shown that the disruption of the mammillothalamic tract inhibits seizures and that electrical stimulation of the mammillary body or mammillothalamic tract raises the seizure threshold. In humans, DBS targeting the mammillary body through the mammillothalamic tract or the stimulation of the anterior thalamic nucleus, especially in the areas closely related to the mammillothalamic tract, has been found effective in patients with medically refractory epilepsy. Nonetheless, little knowledge exists on the functional anatomy of the mammillary body efferents, and their role in the exact mechanism of epileptogenic activity and in the memory function of the human brain. CONCLUSIONS A comprehensive knowledge of the white matter anatomy of the mammillothalamic and mammillotegmental tracts is crucial since they have emerged as new DBS targets in the treatment of various disorders including dementia and epilepsy.
Collapse
|
4
|
Jakab A, Werner B, Piccirelli M, Kovács K, Martin E, Thornton JS, Yousry T, Szekely G, O'Gorman Tuura R. Feasibility of Diffusion Tractography for the Reconstruction of Intra-Thalamic and Cerebello-Thalamic Targets for Functional Neurosurgery: A Multi-Vendor Pilot Study in Four Subjects. Front Neuroanat 2016; 10:76. [PMID: 27462207 PMCID: PMC4940380 DOI: 10.3389/fnana.2016.00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Functional stereotactic neurosurgery by means of deep brain stimulation or ablation provides an effective treatment for movement disorders, but the outcome of surgical interventions depends on the accuracy by which the target structures are reached. The purpose of this pilot study was to evaluate the feasibility of diffusion tensor imaging (DTI) based probabilistic tractography of deep brain structures that are commonly used for pre- and perioperative targeting for functional neurosurgery. Three targets were reconstructed based on their significance as intervention sites or as a no-go area to avoid adverse side effects: the connections propagating from the thalamus to (1) primary and supplementary motor areas, (2) to somatosensory areas and the cerebello-thalamic tract (CTT). We evaluated the overlap of the reconstructed connectivity based targets with corresponding atlas based data, and tested the inter-subject and inter-scanner variability by acquiring repeated DTI from four volunteers, and on three MRI scanners with similar sequence parameters. Compared to a 3D histological atlas of the human thalamus, moderate overlaps of 35-50% were measured between connectivity- and atlas based volumes, while the minimal distance between the centerpoints of atlas and connectivity targets was 2.5 mm. The variability caused by the MRI scanner was similar to the inter-subject variability, except for connections with the postcentral gyrus where it was higher. While CTT resolved the anatomically correct trajectory of the tract individually, high volumetric variability was found across subjects and between scanners. DTI can be applied in the clinical, preoperative setting to reconstruct the CTT and to localize subdivisions within the lateral thalamus. In our pilot study, such subdivisions moderately matched the borders of the ventrolateral-posteroventral (VLpv) nucleus and the ventral-posterolateral (VPL) nucleus. Limitations of the currently used standard DTI protocols were exacerbated by large scanner-to-scanner variability of the connectivity-based targets.
Collapse
Affiliation(s)
- András Jakab
- Center for Magnetic Resonance Imaging Research, University Children's HospitalZürich, Switzerland; Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of ViennaVienna, Austria
| | - Beat Werner
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zürich Zürich, Switzerland
| | - Kázmér Kovács
- Department of Biomedical Imaging and Laboratory Science, University of Debrecen Debrecen, Hungary
| | - Ernst Martin
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| | | | - Tarek Yousry
- University College London Institute of Neurology London, UK
| | - Gabor Szekely
- Computer Vision Laboratory, ETH Zürich Zürich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for Magnetic Resonance Imaging Research, University Children's Hospital Zürich, Switzerland
| |
Collapse
|
5
|
Ware M, Hamdi-Rozé H, Dupé V. Notch signaling and proneural genes work together to control the neural building blocks for the initial scaffold in the hypothalamus. Front Neuroanat 2014; 8:140. [PMID: 25520625 PMCID: PMC4251447 DOI: 10.3389/fnana.2014.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
The vertebrate embryonic prosencephalon gives rise to the hypothalamus, which plays essential roles in sensory information processing as well as control of physiological homeostasis and behavior. While patterning of the hypothalamus has received much attention, initial neurogenesis in the developing hypothalamus has mostly been neglected. The first differentiating progenitor cells of the hypothalamus will give rise to neurons that form the nucleus of the tract of the postoptic commissure (nTPOC) and the nucleus of the mammillotegmental tract (nMTT). The formation of these neuronal populations has to be highly controlled both spatially and temporally as these tracts will form part of the ventral longitudinal tract (VLT) and act as a scaffold for later, follower axons. This review will cumulate and summarize the existing data available describing initial neurogenesis in the vertebrate hypothalamus. It is well-known that the Notch signaling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. It has only recently been proposed that loss of Notch signaling in the developing chick embryo causes an increase in the number of neurons in the hypothalamus, highlighting an early function of the Notch pathway during hypothalamus formation. Further analysis in the chick and mouse hypothalamus confirms the expression of Notch components and Ascl1 before the appearance of the first differentiated neurons. Many newly identified proneural target genes were also found to be expressed during neuronal differentiation in the hypothalamus. Given the critical role that hypothalamic neural circuitry plays in maintaining homeostasis, it is particularly important to establish the targets downstream of this Notch/proneural network.
Collapse
Affiliation(s)
- Michelle Ware
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1 Rennes, France
| |
Collapse
|
6
|
Alarcon C, de Notaris M, Palma K, Soria G, Weiss A, Kassam A, Prats-Galino A. Anatomic Study of the Central Core of the Cerebrum Correlating 7-T Magnetic Resonance Imaging and Fiber Dissection With the Aid of a Neuronavigation System. Oper Neurosurg (Hagerstown) 2013; 10 Suppl 2:294-304; discussion 304. [DOI: 10.1227/neu.0000000000000271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Different strategies have been used to study the fiber tract anatomy of the human brain in vivo and ex vivo. Nevertheless, the ideal method to study white matter anatomy has yet to be determined because it should integrate information obtained from multiple sources.
OBJECTIVE:
We developed an anatomic method in cadaveric specimens to study the central core of the cerebrum combining traditional white matter dissection with high-resolution 7-T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system.
METHODS:
Ten cerebral hemispheres were prepared using the traditional Klingler technique. Before dissection, a structural ultrahigh magnetic field 7-T MRI study was performed on each hemisphere specifically prepared with surface fiducials for neuronavigation. The dissection was then performed from the medial hemispheric surface using the classic white fiber dissection technique. During each step of the dissection, the correlation between the anatomic findings and the 7-T MRI was evaluated with the neuronavigation system.
RESULTS:
The anatomic study was divided in 2 stages: diencephalic and limbic. The diencephalic stage included epithalamic, thalamic, hypothalamic, and subthalamic components. The limbic stage consisted of extending the dissection to complete the Papez circuit. The detailed information given by the combination of both methods allowed us to identify and validate the position of fibers that may be difficult to appreciate and dissect (ie, the medial forebrain bundle).
CONCLUSION:
The correlation of high-definition 7-T MRI and the white matter dissection technique with neuronavigation significantly improves the understanding of the structural connections in complex areas of the human cerebrum.
Collapse
Affiliation(s)
- Carlos Alarcon
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Matteo de Notaris
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Kenneth Palma
- Experimental MRI 7T Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
- Department of Neurosurgery, University of Pisa, Pisa, Italy
| | - Alessandro Weiss
- Department of Neurosurgery, Division of Neurosurgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Amin Kassam
- Laboratory of Surgical Neuroanatomy (LSNA), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
7
|
Corticoreticular pathway in the human brain: diffusion tensor tractography study. Neurosci Lett 2011; 508:9-12. [PMID: 22197953 DOI: 10.1016/j.neulet.2011.11.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/21/2022]
Abstract
The corticoreticular pathway (CRP) is involved in postural control and locomotor function. No study has been conducted for identification of the CRP in the human brain. In the current study, we attempted to identify the CRP in the human brain, using diffusion tensor tractography (DTT). We recruited 24 healthy volunteers for this study. Diffusion tensor images were scanned using 1.5-T. For reconstruction of the CRP, a seed region of interest (ROI) was placed on the reticular formation of the medulla. The first target ROI was placed on the midbrain tegmentum and the second target ROI was placed on the premotor cortex (Brodmann area 6). Values of fractional anisotropy, mean diffusivity, and tract volume of the CRP were measured. The CRP, which originated from the premotor cortex, descended through the corona radiata and the posterior limb of the internal capsule anterior to the corticospinal tract. In the midbrain and pons, it passed through the tegmentum and terminated at the pontomedullary reticular formation. No differences in terms of fractional anisotropy, mean diffusivity, and tract volume were observed between hemispheres (P>0.05). We identified the CRP in the human brain using DTT. These methods and results would be helpful to both clinicians and researchers in the neuroscience field.
Collapse
|