1
|
Klaassen L, Jaarsma-Coes MG, Marinkovic M, Luyten GPM, Rasch CRN, Ferreira TA, Beenakker JWM. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39250118 PMCID: PMC11385876 DOI: 10.1167/iovs.65.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose Perfusion-weighted imaging (PWI; magnetic resonance imaging [MRI]) has been shown to provide valuable biological tumor information in uveal melanoma (UM). Clinically used semiquantitative methods do not account for tumor pigmentation and eye movement. We hypothesize that a quantitative PWI method that incorporates these, provides a more accurate description of tumor perfusion than the current clinical method. The aim of this study was to test this in patients with UM before and after radiotherapy. Methods Perfusion-weighted 3T MRIs were retrospectively analyzed in 47 patients with UM before and after radiotherapy. Tofts pharmacokinetic modeling was performed to determine vascular permeability (Ktrans), extracellular extravascular space (ve), and reflux rate (kep). These were compared with semiquantitative clinical parameters including peak intensity and outflow percentage. Results The effect of tumor pigmentation on peak intensity and outflow percentage was statistically significant (P < 0.01) and relative peak intensity was significantly different between melanotic and amelanotic tumors (1.5 vs. 1.9, P < 0.01). Before radiotherapy, median tumor Ktrans was 0.63 min-1 (range = 0.06-1.42 min-1), median ve was 0.23 (range = 0.09-0.63), and median kep was 2.3 min-1 (range = 0.6-5.0 min-1). After radiotherapy, 85% showed a decrease in Ktrans and kep (P < 0.01). Changes in tumor pigmentation before and after radiotherapy were small and not significant (median increase in T1 of 33 ms, P = 0.55). Conclusions Quantitative PWI parameters decreased significantly after radiotherapy and can therefore can serve as an early biomarker for treatment response assessment. However, due to the nonsignificant changes in tumor pigmentation before and after radiotherapy, the current semiquantitative method appears to be sufficiently sensitive for detection of changes in tumor perfusion.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
| | - Myriam G Jaarsma-Coes
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Marina Marinkovic
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
| | - Coen R N Rasch
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Teresa A Ferreira
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Leiden University Medical Center, Department of Ophthalmology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, The Netherlands
| |
Collapse
|
2
|
Zheng Y, Tang Y, Yao Y, Ge T, Pan H, Cui J, Rao Y, Tao X, Jia R, Ai S, Song X, Zhuang A. Correlation Analysis of Apparent Diffusion Coefficient Histogram Parameters and Clinicopathologic Features for Prognosis Prediction in Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38953846 PMCID: PMC11221615 DOI: 10.1167/iovs.65.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Yao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tongxin Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Pan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
3
|
Lim JZ, Gokul A, Misra SL, Pan X, Charlton A, McGhee CNJ. An optimized 3T MRI scan protocol to assess iris melanoma with subsequent histopathological verification - A prospective study. Asia Pac J Ophthalmol (Phila) 2024; 13:100047. [PMID: 38417788 DOI: 10.1016/j.apjo.2024.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) has demonstrated high levels of tissue contrast, accuracy and reproducibility in evaluating posterior uveal melanoma. Owing to smaller size, the role of MRI in detecting and characterising iris melanoma has not yet been explored. AIMS To develop a protocol to image iris melanoma and describe the MRI characteristics of histopathological-confirmed iris melanoma. MATERIALS AND METHODS An optimised MRI protocol, using a 3T MRI scanner and a 32-channel head coil, was developed to image iris tumours. A prospective, single-centre, 12-month study was conducted on all patients with lesions suspicious for iris melanoma. All patients were offered an MRI scan in addition to the standardised clinical procedures. Image quality comparison was made with existing clinical investigations. Iris melanoma characteristics on MRI are described. RESULTS A successful optimised MRI scan protocol was developed that was able to detect and characterise iris melanoma. One normal participant and five patients with subsequent histopathological-confirmed iris melanoma (n = 6) were recruited. Four patients completed the full MRI sequence. All iris melanoma were detected on at least one T1- or T2-weighted images. When compared to the vitreous, all iris melanomas demonstrated hyper-intensity on T1-weighted images and hypo-intensity on T2-weighted images. On T1-mapping, T1-values of iris melanoma demonstrated an inverse relationship with the degree of tumour pigmentation. CONCLUSIONS This study highlights an optimised, easily reproducible MRI scan protocol to image iris melanoma. Numerous MR imaging characteristics of iris melanoma are reported for the first time and a potential non-invasive tumour biomarker is described.
Collapse
Affiliation(s)
- Joevy Z Lim
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Akilesh Gokul
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Xingzheng Pan
- Department of Physiology, School of Medical Science, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Amanda Charlton
- Department of Histopathology, Te Whatu Ora - Health New Zealand Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand Eye Centre, University of Auckland, New Zealand; Department of Ophthalmology, Te Whatu Ora - Health New Zealand Auckland, New Zealand.
| |
Collapse
|
4
|
Jaarsma-Coes MG, Klaassen L, Marinkovic M, Luyten GPM, Vu THK, Ferreira TA, Beenakker JWM. Magnetic Resonance Imaging in the Clinical Care for Uveal Melanoma Patients-A Systematic Review from an Ophthalmic Perspective. Cancers (Basel) 2023; 15:cancers15112995. [PMID: 37296958 DOI: 10.3390/cancers15112995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Conversely to most tumour types, magnetic resonance imaging (MRI) was rarely used for eye tumours. As recent technical advances have increased ocular MRI's diagnostic value, various clinical applications have been proposed. This systematic review provides an overview of the current status of MRI in the clinical care of uveal melanoma (UM) patients, the most common eye tumour in adults. In total, 158 articles were included. Two- and three-dimensional anatomical scans and functional scans, which assess the tumour micro-biology, can be obtained in routine clinical setting. The radiological characteristics of the most common intra-ocular masses have been described extensively, enabling MRI to contribute to diagnoses. Additionally, MRI's ability to non-invasively probe the tissue's biological properties enables early detection of therapy response and potentially differentiates between high- and low-risk UM. MRI-based tumour dimensions are generally in agreement with conventional ultrasound (median absolute difference 0.5 mm), but MRI is considered more accurate in a subgroup of anteriorly located tumours. Although multiple studies propose that MRI's 3D tumour visualisation can improve therapy planning, an evaluation of its clinical benefit is lacking. In conclusion, MRI is a complementary imaging modality for UM of which the clinical benefit has been shown by multiple studies.
Collapse
Affiliation(s)
- Myriam G Jaarsma-Coes
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lisa Klaassen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Tang MCY, Ferreira TA, Marinkovic M, Jaarsma-Coes MG, Klaassen L, Vu THK, Creutzberg CL, Rodrigues MF, Horeweg N, Klaver YLB, Rasch CRN, Luyten GPM, Beenakker JWM. MR-based follow-up after brachytherapy and proton beam therapy in uveal melanoma. Neuroradiology 2023:10.1007/s00234-023-03166-1. [PMID: 37249621 DOI: 10.1007/s00234-023-03166-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE MRI is increasingly used in the diagnosis and therapy planning of uveal melanoma (UM). In this prospective cohort study, we assessed the radiological characteristics, in terms of anatomical and functional imaging, of UM after ruthenium-106 plaque brachytherapy or proton beam therapy (PBT) and compared them to conventional ultrasound. METHODS Twenty-six UM patients were evaluated before and 3, 6 and 12 months after brachytherapy (n = 13) or PBT (n = 13). Tumour prominences were compared between ultrasound and MRI. On diffusion-weighted imaging, the apparent diffusion value (ADC), and on perfusion-weighted imaging (PWI), the time-intensity curves (TIC), relative peak intensity and outflow percentages were determined. Values were compared between treatments and with baseline. RESULTS Pre-treatment prominences were comparable between MRI and ultrasound (mean absolute difference 0.51 mm, p = 0.46), but larger differences were observed post-treatment (e.g. 3 months: 0.9 mm (p = 0.02)). Pre-treatment PWI metrics were comparable between treatment groups. After treatment, brachytherapy patients showed favourable changes on PWI (e.g. 67% outflow reduction at 3 months, p < 0.01). After PBT, significant perfusion changes were observed at a later timepoint (e.g. 38% outflow reduction at 6 months, p = 0.01). No consistent ADC changes were observed after either treatment, e.g. a 0.11 × 10-3mm2/s increase 12 months after treatment (p = 0.15). CONCLUSION MR-based follow-up is valuable for PBT-treated patients as favourable perfusion changes, including a reduction in outflow, can be detected before a reduction in size is apparent on ultrasound. For brachytherapy, a follow-up MRI is of less value as already 3 months post-treatment a significant size reduction can be measured on ultrasound.
Collapse
Affiliation(s)
- Michael C Y Tang
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
| | - Myriam G Jaarsma-Coes
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lisa Klaassen
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Myra F Rodrigues
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
- Holland Proton Therapy Center, Delft, Netherlands
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne L B Klaver
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
- Holland Proton Therapy Center, Delft, Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
- Holland Proton Therapy Center, Delft, Netherlands
| | - Gre P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, P.O. 9600, 2300, RC, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Klaassen L, Jaarsma-Coes MG, Verbist BM, Vu TK, Marinkovic M, Rasch CR, Luyten GP, Beenakker JWM. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Phys Imaging Radiat Oncol 2022; 24:102-110. [PMID: 36386446 PMCID: PMC9649381 DOI: 10.1016/j.phro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose Three-dimensional (3D) Magnetic Resonance Imaging (MRI) is increasingly used to complement conventional two-dimensional ultrasound in the assessment of tumour dimension measurement of uveal melanoma. However, the lack of definitions of the 3D measurements of these tumour dimensions hinders further adaptation of MRI in ocular radiotherapy planning. In this study, we composed 3D MR-based definitions of tumour prominence and basal diameter and compared them to conventional ultrasound. Materials and methods Tumours were delineated on 3DT2 and contrast-enhanced 3DT1 (T1gd) MRI for 25 patients. 3D definitions of tumour prominence and diameter were composed and evaluated automatically on the T1gd and T2 contours. Automatic T1gd measurements were compared to manual MRI measurements, to automatic T2 measurements and to manual ultrasound measurements. Results Prominence measurements were similar for all modalities (median absolute difference 0.3 mm). Automatic T1gd diameter measurements were generally larger than manual MRI, automatic T2 and manual ultrasound measurements (median absolute differences of 0.5, 1.6 and 1.1 mm respectively), mainly due to difficulty defining the axis of the largest diameter. Largest differences between ultrasound and MRI for both prominence and diameter were found in anteriorly located tumours (up to 1.6 and 4.5 mm respectively), for which the tumour extent could not entirely be visualized with ultrasound. Conclusions The proposed 3D definitions for tumour prominence and diameter agreed well with ultrasound measurements for tumours for which the extent was visible on ultrasound. 3D MRI measurements generally provided larger diameter measurements than ultrasound. In anteriorly located tumours, the MRI measurements were considered more accurate than conventional ultrasound.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Myriam G. Jaarsma-Coes
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Berit M. Verbist
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - T.H. Khanh Vu
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Marina Marinkovic
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Coen R.N. Rasch
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - Gregorius P.M. Luyten
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Jan-Willem M. Beenakker
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
7
|
Solnik M, Paduszyńska N, Czarnecka AM, Synoradzki KJ, Yousef YA, Chorągiewicz T, Rejdak R, Toro MD, Zweifel S, Dyndor K, Fiedorowicz M. Imaging of Uveal Melanoma—Current Standard and Methods in Development. Cancers (Basel) 2022; 14:cancers14133147. [PMID: 35804919 PMCID: PMC9265106 DOI: 10.3390/cancers14133147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Uveal melanoma is the most prevalent intraocular tumor in adults, derived from melanocytes; the liver is the most common site of its metastases. Due to troublesome tumor localization, different imaging techniques are utilized in diagnostics, i.e., fundus imaging (FI), ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), or fundus autofluorescence (FAF). Specialists eagerly use these techniques, but sometimes the precision and quality of the obtained images are imperfect, raising diagnostic doubts and prompting the search for new ones. In addition to analyzing the currently utilized methods, this review also introduces experimental techniques that may be adapted to clinical practice in the future. Moreover, we raise the topic and present a perspective for personalized medicine in uveal melanoma treatment. Abstract Uveal melanoma is the most common primary intraocular malignancy in adults, characterized by an insidious onset and poor prognosis strongly associated with tumor size and the presence of distant metastases, most commonly in the liver. Contrary to most tumor identification, a biopsy followed by a pathological exam is used only in certain cases. Therefore, an early and noninvasive diagnosis is essential to enhance patients’ chances for early treatment. We reviewed imaging modalities currently used in the diagnostics of uveal melanoma, including fundus imaging, ultrasonography (US), optical coherence tomography (OCT), single-photon emission computed tomography (SPECT), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF), as well as positron emission tomography/computed tomography (PET/CT) or magnetic resonance imaging (MRI). The principle of imaging techniques is briefly explained, along with their role in the diagnostic process and a summary of their advantages and limitations. Further, the experimental data and the advancements in imaging modalities are explained. We describe UM imaging innovations, show their current usage and development, and explain the possibilities of utilizing such modalities to diagnose uveal melanoma in the future.
Collapse
Affiliation(s)
- Małgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.S.); (N.P.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.S.); (N.P.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Kamil J. Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
- Correspondence:
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Tomasz Chorągiewicz
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
| | - Mario Damiano Toro
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland; (T.C.); (R.R.); (M.D.T.)
- Eye Clinic, Public Health Department, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Sandrine Zweifel
- Department of Ophthalmology, University of Zurich, 8091 Zurich, Switzerland;
| | - Katarzyna Dyndor
- Department of Radiography, Medical University of Lublin, 8 Jaczewskiego Str., 20-090 Lublin, Poland;
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| |
Collapse
|
8
|
Eye-specific quantitative dynamic contrast-enhanced MRI analysis for patients with intraocular masses. MAGMA (NEW YORK, N.Y.) 2022; 35:311-323. [PMID: 34643852 PMCID: PMC8995252 DOI: 10.1007/s10334-021-00961-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Dynamic contrast enhanced (DCE)-MRI is currently not generally used for intraocular masses as lesions are small, have an inhomogeneous T1 and the eye is prone to motion. The aim of this paper is to address these eye-specific challenges, enabling accurate ocular DCE-MRI. MATERIALS & METHODS DCE-MRI of 19 uveal melanoma (UM) patients was acquired using a fat-suppressed 3D spoiled gradient echo sequence with TWIST (time-resolved angiography with stochastic trajectories sequence). The analysis consisted of a two-step registration method to correct for both head and eye motion. A T1 map was calculated to convert signal intensities to concentrations. Subsequently, the Tofts model was fitted voxel wise to obtain Ktrans and ve. RESULTS Registration significantly improved the concentration curve quality (p < 0.001). The T1 of melanotic lesions was significantly lower than amelanotic lesions (888 ms vs 1350 ms, p = 0.03). The average achieved B1+ in the lesions was 91%. The average Ktrans was 0.46 min-1 (range 0.13-1.0) and the average ve was 0.22 (range 0.10-0.51). CONCLUSION Using this eye-specific analysis, DCE of intraocular masses is possible which might aid in the diagnosis, prognosis and follow-up of UM.
Collapse
|
9
|
Luo J, Chen Y, Yang Y, Zhang K, Liu Y, Zhao H, Dong L, Xu J, Li Y, Wei W. Prognosis Prediction of Uveal Melanoma After Plaque Brachytherapy Based on Ultrasound With Machine Learning. Front Med (Lausanne) 2022; 8:777142. [PMID: 35127747 PMCID: PMC8816318 DOI: 10.3389/fmed.2021.777142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular malignancy in adults. Plaque brachytherapy remains the dominant eyeball-conserving therapy for UM. Tumor regression in UM after plaque brachytherapy has been reported as a valuable prognostic factor. The present study aimed to develop an accurate machine-learning model to predict the 4-year risk of metastasis and death in UM based on ocular ultrasound data. MATERIAL AND METHODS A total of 454 patients with UM were enrolled in this retrospective, single-center study. All patients were followed up for at least 4 years after plaque brachytherapy and underwent ophthalmologic evaluations before the therapy. B-scan ultrasonography was used to measure the basal diameters and thickness of tumors preoperatively and postoperatively. Random Forest (RF) algorithm was used to construct two prediction models: whether a patient will survive for more than 4 years and whether the tumor will develop metastasis within 4 years after treatment. RESULTS Our predictive model achieved an area under the receiver operating characteristic curve (AUC) of 0.708 for predicting death using only a one-time follow-up record. Including the data from two additional follow-ups increased the AUC of the model to 0.883. We attained AUCs of 0.730 and 0.846 with data from one and three-time follow-up, respectively, for predicting metastasis. The model found that the amount of postoperative follow-up data significantly improved death and metastasis prediction accuracy. Furthermore, we divided tumor treatment response into four patterns. The D(decrease)/S(stable) patterns are associated with a significantly better prognosis than the I(increase)/O(other) patterns. CONCLUSIONS The present study developed an RF model to predict the risk of metastasis and death from UM within 4 years based on ultrasound follow-up records following plaque brachytherapy. We intend to further validate our model in prospective datasets, enabling us to implement timely and efficient treatments.
Collapse
Affiliation(s)
- Jingting Luo
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuning Chen
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuhang Yang
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- InferVision Healthcare Science and Technology Limited Company, Shanghai, China
| | - Yueming Liu
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hanqing Zhao
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Xu
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Histopathologic and MR Imaging Appearance of Spontaneous and Radiation-Induced Necrosis in Uveal Melanomas: Initial Results. Cancers (Basel) 2022; 14:cancers14010215. [PMID: 35008378 PMCID: PMC8750257 DOI: 10.3390/cancers14010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Uveal melanomas may undergo necrosis, both spontaneously or following radiotherapy. Nowadays radiotherapy is the preferred treatment, whereas enucleation of the eye is used in selected cases. In order to differentiate the effects of radiotherapy from spontaneous degenerative changes in uveal melanomas, we compared the appearance of necrosis, both from a histopathological point of view and from the perspective of MR imaging, in two groups of patients with uveal melanoma: a group who had undergone previous proton beam radiotherapy (secondary enucleation); a control group who had undergone enucleation without any previous radiotherapy treatment (primary enucleation). Irradiated and nonirradiated uveal melanomas differ on the basis of the histological appearance, the MR imaging appearance and the distribution of necrosis. We hope that the findings we observed could be extended to all patients with uveal melanomas treated with radiotherapy, and may enhance the accuracy of radiologists in evaluating MR examinations after radiotherapy. Abstract Necrosis in uveal melanomas can be spontaneous or induced by radiotherapy. The purpose of our study was to compare the histopathologic and MRI findings of radiation-induced necrosis of a group of proton beam-irradiated uveal melanomas with those of spontaneous necrosis of a control group of patients undergoing primary enucleation. 11 uveal melanomas who had undergone proton beam radiotherapy, MRI and secondary enucleation, and a control group of 15 untreated uveal melanomas who had undergone MRI and primary enucleation were retrospectively identified. Within the irradiated and nonirradiated group, 7 and 6 eyes with histological evidence of necrosis respectively, were furtherly selected for the final analysis; the appearance of necrosis was assessed at histopathologic examination and MRI. Irradiated melanomas showed a higher degree of necrosis as compared with nonirradiated tumors. Irradiated and nonirradiated lesions differed based on the appearance and distribution of necrosis. Irradiated tumors showed large necrotic foci, sharply demarcated from the viable neoplastic tissue; nonirradiated tumors demonstrated small, distinct foci of necrosis. Radiation-induced necrosis, more pigmented than surrounding viable tumor, displayed high signal intensity on T1-weighted and low signal intensity on T2-weighted images. The hemorrhagic/coagulative necrosis, more prevalent in nonirradiated tumors (4 out of 6 vs. 1 out of 7 cases), appeared hyperintense on T2-weighted and hypointense on T1-weighted images. Our study boosts the capability to recognize radiation-induced alterations in uveal melanomas at MRI and may improve the accuracy of radiologists in the evaluation of follow-up MR examination after radiotherapy.
Collapse
|
11
|
Ferreira TA, Jaarsma-Coes MG, Marinkovic M, Verbist B, Verdijk RM, Jager MJ, Luyten GPM, Beenakker JWM. MR imaging characteristics of uveal melanoma with histopathological validation. Neuroradiology 2021; 64:171-184. [PMID: 34718831 PMCID: PMC8724164 DOI: 10.1007/s00234-021-02825-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Purpose To evaluate the magnetic resonance imaging (MRI) characteristics of uveal melanoma (UM), to compare them with fundoscopy and ultrasound (US), and to validate them with histopathology. Methods MR images from 42 UM were compared with US and fundoscopy, and on 14 enucleated cases with histopathology. Results A significant relationship between the signal intensity on T1 and pigmentation on histopathology was found (p=0.024). T1 hyperintense UM were always moderately or strongly pigmented on histopathology, while T1-hypointense UM were either pigmented or non-pigmented. Mean apparent diffusion coefficient (ADC) of the UM was 1.16 ± 0.26 × 10−3 mm2/s. Two-thirds of the UM had a wash-out and the remaining a plateau perfusion time-intensity curve (TIC). MRI was limited in evaluating the basal diameter of flat tumors. US tends to show larger tumor prominence (0.5mm larger, p=0.008) and largest basal diameter (1.4mm larger, p<0.001). MRI was good in diagnosing ciliary body involvement, extrascleral extension, and optic nerve invasion, but limited on identifying scleral invasion. An increase of tumor prominence was associated with lower ADC values (p=0.030) and favored a wash-out TIC (p=0.028). An increase of tumor ADC correlated with a plateau TIC (p=0.011). Conclusions The anatomical and functional MRI characteristics of UM were comprehensively assessed. Knowing the MRI characteristics of UM is important in order to confirm the diagnosis and to differentiate UM from other intra-ocular lesions and because it has implications for treatment planning. MRI is a good technique to evaluate UM, being only limited in case of flat tumors or on identifying scleral invasion. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02825-5.
Collapse
Affiliation(s)
- Teresa A Ferreira
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| | - Myriam G Jaarsma-Coes
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Berit Verbist
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Burgemeester Oudlaan 50, 3062, PA, Rotterdam, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| |
Collapse
|
12
|
Tang MCY, Jaarsma-Coes MG, Ferreira TA, Zwirs-Grech Fonk L, Marinkovic M, Luyten GPM, Beenakker JWM. A Comparison of 3 T and 7 T MRI for the Clinical Evaluation of Uveal Melanoma. J Magn Reson Imaging 2021; 55:1504-1515. [PMID: 34652049 PMCID: PMC9293452 DOI: 10.1002/jmri.27939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) is increasingly being used in the diagnosis and treatment planning of uveal melanoma (UM), the most common primary intraocular tumor. Initially, 7 T MRI was primarily used, but more recently these techniques have been translated to 3 T, as it is more commonly available. Purpose Compare the diagnostic performance of 3 T and 7 T MRI of UM. Study Type Prospective. Population Twenty‐seven UM patients (19% female). Field Strength/Sequence 3 T: T1‐ and T2‐weighted three‐dimensional (3D) spin echo (SE) and multi‐slice (MS) SE, 7 T: T1‐weighted 3D gradient echo (GE), T2‐weighted 3D SE and MS SE, 3 T and 7 T GE dynamic contrast‐enhanced. T1 weighted images: acquired before and after Gadolinium (Gd) administration. Assessment For all sequences, scan and diagnostic quality was quantified using a 5‐point Likert scale. Signal intensities on T1 and T2 relative to choroid and eye muscle respectively were assessed as well as the tumor prominence. Finally, the perfusion time‐intensity curves (TICs) were classified as plateau, progressive, or wash‐out. Statistical Tests Image quality scores were compared between both field strengths using Wilcoxon signed‐rank and McNemar tests. Paired t‐tests and Bland–Altman were used for comparing tumor prominences. P < 0.05 was considered statistically significant. Results Image quality was comparable between 3 T and 7 T, for 3DT1, 3DT2, 3DT1Gd (P = 0.86; P = 0.34; P = 0.78, respectively) and measuring tumor dimensions (P = 0.40). 2DT1 and 2DT2 image quality were rated better on 3 T compared to 7 T. Most UM had the same relative signal intensities at 3 T and 7 T on T1 (17/21) and T2 (13/17), and 16/18 diagnostic TICs received the same classification. Tumor prominence measurements were similar between field strengths (95% confidence interval: −0.37 mm to 0.03 mm, P = 0.097). Data Conclusion Diagnostic performance of the evaluated 3 T protocol proved to be as capable as 7 T, with the addition of 3 T being superior in assessing tumor growth into nearby anatomical structures compared to 7 T. Level of Evidence 2 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- Michael C Y Tang
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam G Jaarsma-Coes
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorna Zwirs-Grech Fonk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Niendorf T, Beenakker JWM, Langner S, Erb-Eigner K, Bach Cuadra M, Beller E, Millward JM, Niendorf TM, Stachs O. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)? Curr Eye Res 2021; 46:1251-1270. [PMID: 33535828 DOI: 10.1080/02713683.2021.1874021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jan-Willem M Beenakker
- Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meritxell Bach Cuadra
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Oliver Stachs
- Department Life, Light & Matter, University Rostock, Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
14
|
Gumeler E, Parlak S, Yazici G, Karabulut E, Kiratli H, Oguz KK. Single shot echo planar imaging (ssEPI) vs single shot turbo spin echo (ssTSE) DWI of the orbit in patients with ocular melanoma. Br J Radiol 2020; 94:20200825. [PMID: 33264035 DOI: 10.1259/bjr.20200825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Diffusion weighted imaging (DWI) has become important for orbital imaging. However, the echoplanar imaging (EPI) DWI has inherent obstacles due to susceptibility to magnetic field inhomogeneities. We conducted a comparative study assessing the image quality of orbits in a patient cohort with uveal melanoma (UM). We hypothesized that single shot turbo spin echo (ssTSE) DWI would have better image quality in terms of less distortion and artifacts and yield better tissue evaluation compared to ssEPI-DWI. METHODS ssEPI-DWI and ssTSE-DWI of orbits were obtained from 50 patients with uveal melanoma who were prospectively enrolled in the study. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diffusion signal properties, and apparent diffusion coefficient (ADC) values were collected and compared between ssEPI-DWI and ssTSE-DWI. Two reviewers evaluated and compared the geometric distortion, susceptibility and ghosting artifacts, resolution, demarcation of ocular mass, and overall quality. RESULTS A higher DR was found in ssEPI-DWI compared to ssTSE-DWI (p < 0.001). SNR and CNR were lower for the temporal lobe cortex (p ≤ 0.004), but higher for melanoma in ssEPI-DWI than ssTSE-DWI (p ≤ 0.037). Geometric distortion and artifacts were more common in ssEPI-DWI (p < 0.001). Resolution (p ≤ 0.013) and overall quality (p < 0.001) were better in ssTSE-DWI. Ocular masses were demarcated better on ssEPI-DWI (p ≤ 0.002). Significant negative correlations between T1 and T2 signal intensities (r = -0.369, p ≤ 0.008) and positive correlations between T2 and both DWI signal intensities (r = 0.686 and p < 0.001 for ssEPI-DWI, r = 0.747 and p < 0.001 for ssTSE-DWI) were revealed. CONCLUSION With less geometric distortion and susceptibility artifacts, better resolution, and overall quality, ssTSE-DWI can serve as an alternative to ssEPI-DWI for orbital DWI. ADVANCES IN KNOWLEDGE ssTSE-DWI can be a better alternative of diffusion imaging of orbits with less susceptibility artifact and geometric distortion compared to ssEPI-DWI.
Collapse
Affiliation(s)
- Ekim Gumeler
- Department of Radiology, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Safak Parlak
- Department of Radiology, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Hayyam Kiratli
- Department of Ophtalmology, Hacettepe University, School of Medicine, Ankara, Turkey
| | - Kader K Oguz
- Department of Radiology, Hacettepe University, School of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Abstract
Supplemental Digital Content is available in the text. Uveal melanoma (UM), the most common primary intraocular tumour, is often complicated by exudative retinal detachment (RD). Sometimes, this exudative RD is mistaken for a rhegmatogenous detachment and is subsequently treated with vitrectomy with silicone oil (SiOil) tamponade. As SiOil prevents ultrasound imaging, the diagnosis, treatment planning and/or follow-up of UM underlying the detachment are often severely hindered by the SiOil. We aim to develop and evaluate new MRI methods to image UM patients with a SiOil tamponade and evaluate this in vivo. A dedicated MRI protocol for 3 and 7 T was developed and subsequently evaluated in three patients. The MRI protocol developed was evaluated in three patients. In the first patient, SiOil hindered follow-up and therefore MRI was indicated. No tumour recurrence was found after two follow-up scans. The second and third patient underwent vitrectomy with SiOil for assumed rhegmatogenous RD in another hospital, during which a mass was found. In these cases, MRI was used to determine whether the lesion was UM and perform measurements to plan brachytherapy treatment. In general, the proposed workflow is more complicated on 7 T than on 3 T as the off-resonance effects scale linearly with field strength. For example, the shimming procedure needed modifications at 7 T, whereas at 3 T, the automatic shimming sufficed. However, at 7 T, higher resolution images were obtained compared with 3 T (0.6 vs. 0.8 mm3). A dedicated MRI protocol enables high-resolution imaging of vitrectomized eyes with SiOil tamponade, enabling treatment planning or follow-up in UM patients.
Collapse
|
16
|
Bitencourt FBCSN, Bitencourt AGV, Chojniak MMM, Souza JO, Castro DG, Pellizzon ACA, Chojniak R. Response Evaluation of Choroidal Melanoma After Brachytherapy Using Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI): Preliminary Findings. Front Oncol 2020; 10:825. [PMID: 32509587 PMCID: PMC7248391 DOI: 10.3389/fonc.2020.00825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 02/03/2023] Open
Abstract
Purpose: To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in the assessment of therapeutic response in patients with choroidal melanoma treated with brachytherapy. Materials and Methods: We performed a prospective, unicentric study which included patients with choroidal melanoma and indication for brachytherapy. Three DW-MRI examinations were proposed for each patient, one before and two after treatment. The apparent diffusion coefficient (ADC) value was calculated on DW-MRI and compared with local tumor control assessed by ophthalmologic follow-up. Results: From 07/2018 to 06/2019, 19 patients were recruited, 13 of whom underwent follow-up examinations. Patients' ages ranged from 24 to 78 years and 52.9% were male. At the ocular ultrasound, the mean tumor thickness and diameter were 6.3 and 11.5 mm, respectively. Two patients (15.4%) showed signs of tumor progression during follow-up (7 and 9 months after treatment). There was no statistically significant difference in tumor size between MR before and after treatment, however, there was a significant reduction in mean ADC in patients with progression (p = 0.02). Conclusion: DW-MRI is a promising method for monitoring patients with choroidal melanoma; reduction in the mean ADC values between pre-treatment MRI and the first post-treatment MRI may be related to the lack of response to brachytherapy and increased risk of disease progression.
Collapse
Affiliation(s)
| | | | | | - Juliana O Souza
- Imaging Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Douglas G Castro
- Radiation Oncology Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Rubens Chojniak
- Imaging Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
17
|
Grech Fonk L, Ferreira TA, Webb AG, Luyten GPM, Beenakker JWM. The Economic Value of MR-Imaging for Uveal Melanoma. Clin Ophthalmol 2020; 14:1135-1143. [PMID: 32425499 PMCID: PMC7196205 DOI: 10.2147/opth.s238405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Uveal melanoma (UM) is the most common primary intra-ocular tumour. Treatment is determined by tumour size and location. Generally, smaller tumours are eligible for brachytherapy unless they are located close to posterior pole. Larger tumours are enucleated or undergo proton beam therapy (PBT), which is more expensive than brachytherapy and less available. Accuracy of tumour size determination is critical for accurate planning and delivery of treatment, particularly to ensure tumour coverage, critical structure sparing, and for the choice of treatment modality. This is particularly the case for tumour dimensions that are close to the cut-off point for a specific type of treatment: in the case of the brachytherapy protocol at our institution, 6-8 mm. Ultrasound is conventionally used, but magnetic resonance imaging (MRI) has recently become an additional available tool. Although more expensive, it enables more accurate measurements and is particularly useful in combination with clinical fundus examination, fundus photography and ultrasound. Our aim in this paper was to determine the economic value of MRI for UM treatment. Methods We retrospectively analysed 60 patients' MRI scans acquired as part of a study or for clinical care. For each patient, we assessed whether the extra cost of an MRI generated economic benefit or change in optimal treatment. Results MRI indicated a smaller tumour prominence than US in 10% of patients with intermediate tumour size, resulting in a change from PBT to brachytherapy. The costs of MRI, €200-€1000, are significantly lower than the higher costs of PBT compared to brachytherapy, €24,000 difference. In addition, the annual total economic burden of severe vision impairment associated with eye removal is €10,000. Furthermore, for patients where ultrasound was impossible due to previous surgery, MRI enabled eye-preserving treatment. Conclusion An additional MRI for specific patients with UM improves economic value as it enables less expensive treatment in a sufficient percentage of patients to compensate for the MRI costs. Value is increased in terms of quality of care as it enables for some a treatment option which spares more vision.
Collapse
Affiliation(s)
- Lorna Grech Fonk
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Teresa A Ferreira
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands.,C.J. Gorter Centre for High Field Magnetic Resonance Imaging, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
18
|
Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med 2019; 81:2551-2565. [PMID: 30421448 PMCID: PMC6519255 DOI: 10.1002/mrm.27594] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To explore the feasibility of MR Fingerprinting (MRF) to rapidly quantify relaxation times in the human eye at 7T, and to provide a data acquisition and processing framework for future tissue characterization in eye tumor patients. METHODS In this single-element receive coil MRF approach with Cartesian sampling, undersampling is used to shorten scan time and, therefore, to reduce the degree of motion artifacts. For reconstruction, approaches based on compressed sensing (CS) and matrix completion (MC) were used, while their effects on the quality of the MRF parameter maps were studied in simulations and experiments. Average relaxation times in the eye were measured in 6 healthy volunteers. One uveal melanoma patient was included to show the feasibility of MRF in a clinical context. RESULTS Simulation results showed that an MC-based reconstruction enables large undersampling factors and also results in more accurate parameter maps compared with using CS. Experiments in 6 healthy volunteers used a reduction in scan time from 7:02 to 1:16 min, producing images without visible loss of detail in the parameter maps when using the MC-based reconstruction. Relaxation times from 6 healthy volunteers are in agreement with values obtained from fully sampled scans and values in literature, and parameter maps in a uveal melanoma patient show clear difference in relaxation times between tumor and healthy tissue. CONCLUSION Cartesian-based MRF is feasible in the eye at 7T. High undersampling factors can be achieved by means of MC, significantly shortening scan time and increasing patient comfort, while also mitigating the risk of motion artifacts.
Collapse
Affiliation(s)
- Kirsten Koolstra
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
| | - Jan‐Willem Maria Beenakker
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
- OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Andrew Webb
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
| | - Peter Börnert
- RadiologyC.J. Gorter Center for High‐Field MRI, Leiden University Medical CenterLeidenThe Netherlands
- Philips ResearchHamburgGermany
| |
Collapse
|
19
|
Ferreira TA, Grech Fonk L, Jaarsma-Coes MG, van Haren GGR, Marinkovic M, Beenakker JWM. MRI of Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11030377. [PMID: 30884881 PMCID: PMC6468484 DOI: 10.3390/cancers11030377] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/24/2022] Open
Abstract
Uveal Melanoma (UM) is the most common primary malignant ocular tumor. The high soft tissue contrast and spatial resolution, and the possibility of generating 3D volumetric and functional images, make Magnetic Resonance Imaging (MRI) a valuable diagnostic imaging technique in UM. Current clinical MRI protocols, however, are not optimized for UM and therefore lack the quality for accurate assessments. We therefore developed a dedicated protocol at a 3 Tesla MRI, using an eye coil, consisting of multi-slice 2D sequences, different isotropic sequences and diffusion and perfusion-weighted images. This protocol was prospectively evaluated in 9 uveal melanoma patients. The multi-slice 2D sequences had the highest in-plane resolution, being the most suited for lesion characterization and local extension evaluation. The isotropic 3D Turbo-Spin Echo (TSE) sequences were the most suitable for accurate geometric measurements of the tumor and are therefore important for therapy planning. Diffusion and perfusion-weighted images aid in differentiating benign from malignant lesions and provide quantitative measures on tumor hemodynamics and cellularity, which have been reported to be effective in predicting and assessing treatment outcome. Overall, this dedicated MRI protocol provides high-quality imaging of UM, which can be used to improve its diagnosis, treatment planning, and follow-up.
Collapse
Affiliation(s)
- Teresa A Ferreira
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Lorna Grech Fonk
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
- Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Myriam G Jaarsma-Coes
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
- Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Guido G R van Haren
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Jan-Willem M Beenakker
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
- Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
20
|
Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging. Eur Radiol 2017; 28:982-991. [DOI: 10.1007/s00330-017-5050-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
21
|
Abstract
PURPOSE OF REVIEW Uveal melanoma is the most common primary intraocular malignancy, and its metastases are deadly. Significant work has been done to elucidate the molecular framework that causes uveal melanoma development and metastasis. This review is intended to highlight the most recent breakthroughs in the molecular understanding of uveal melanoma. RECENT FINDINGS Monosomy of chromosome 3 and class 2 gene-expression profile are well-known indicators of melanoma metastasis. However, some patients with disomy 3 and class 1 gene expression profiling (GEP) still develop metastasis. Disomy 3 tumors may be further classified based upon the presence of an SF3B1 mutation. The role of SF3B1 gene is unclear at this time but may be related to the development of late metastases among disomy 3 uveal melanoma. Class 1 GEP tumors have recently been subdivided into class 1a and class 1b, with class 1b tumors carrying a slightly higher risk of metastasis. Among patients with either class 1 or class 2 GEP, the expression of preferentially expressed antigen in melanoma (PRAME) is an independent risk factor for the development of metastasis. Mutation of GNAQ is the most commonly observed mutation in uveal melanoma, regardless of chromosome 3 status or GEP class. Inhibitors or GNAQ may be targets for therapeutic intervention in uveal melanoma. MicroRNA molecules are small noncoding RNA molecules that have been recently demonstrated to function in RNA silencing and posttranscriptional regulation of gene expression. These molecules may play a role in the development of uveal melanoma metastasis. SUMMARY New findings such as the presence or absence of PRAME, mutations in the SF3B1 gene and microRNA dysregulation have added new layers to our understanding of uveal melanoma. These new concepts will enhance our ability to prognosticate tumor metastasis and may provide targets for therapeutic intervention.
Collapse
|
22
|
Uveal melanoma: quantitative evaluation of diffusion-weighted MR imaging in the response assessment after proton-beam therapy, long-term follow-up. Radiol Med 2016; 122:131-139. [PMID: 27752969 DOI: 10.1007/s11547-016-0697-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this prospective study was to investigate the proton-beam-induced changes in apparent diffusion coefficient (ADC) values of ocular melanoma treated with proton-beam therapy (PBT) in patients undergoing long-term magnetic resonance imaging (MRI) follow-up and to assess whether variations in ADC constitute a reliable biomarker for predicting and detecting the response of ocular melanoma to PBT. METHODS Seventeen patients with ocular melanoma treated with PBT were enrolled. All patients underwent conventional MRI and diffusion-weighted imaging (DWI) at baseline and 1, 3, 6, and 18 months after the beginning of therapy. Tumor volumes and ADC values of ocular lesions were measured at each examination. Tumor volumes and mean ADC measurements of the five examination series were compared; correlation of ADC values and tumor regression was estimated. RESULTS Mean ADC values of ocular melanomas significantly increased already 1 month after therapy whereas tumor volume significantly decreased only 6 months after therapy. Pretreatment ADC value of ocular melanomas and early change in ADC value 1 month after therapy significantly correlated with tumor regression. CONCLUSIONS In ocular melanoma treated with PBT, ADC variations precede volume changes. Both pretreatment ADC and early change in ADC value may predict treatment response, thus expanding the role of DWI from diagnostic to prognostic.
Collapse
|