1
|
Cottam NC, Ofori K, Bryant M, Rogge JR, Hekmatyar K, Sun J, Charvet CJ. From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605528. [PMID: 39131378 PMCID: PMC11312435 DOI: 10.1101/2024.07.28.605528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Age is a major predictor of developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging. The timeline of human developmental circuits is well known. It is unclear how such timelines compare to those in mice. We lack age alignments across the lifespan of mice and humans. Here, we build upon our Translating Time resource, which is a tool that equates corresponding ages during development. We collected 477 time points (n=1,132 observations) from age-related changes in body, bone, dental, and brain processes to equate corresponding ages across humans and mice. We acquired high-resolution diffusion MR scans of mouse brains (n=12) at sequential stages of postnatal development (postnatal day 3, 4, 12, 21, 60) to trace the timeline of brain circuit maturation (e.g., olfactory association pathway, corpus callosum). We found heterogeneity in white matter pathway growth. The corpus callosum largely ceases to grow days after birth while the olfactory association pathway grows through P60. We found that a P3 mouse equates to a human at roughly GW24, and a P60 mouse equates to a human in teenage years. Therefore, white matter pathway maturation is extended in mice as it is in humans, but there are species-specific adaptations. For example, olfactory-related wiring is protracted in mice, which is linked to their reliance on olfaction. Our findings underscore the importance of translational tools to map common and species-specific biological processes from model systems to humans.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Kwadwo Ofori
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Madison Bryant
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jessica R. Rogge
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Khan Hekmatyar
- Center for Biomedical and Brain Imaging Center, University of Delaware, Wilmington, DE, USA
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA
| | - Jianli Sun
- Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | | |
Collapse
|
2
|
De Benedictis A, de Palma L, Rossi-Espagnet MC, Marras CE. Connectome-based approaches in pediatric epilepsy surgery: "State-of-the art" and future perspectives. Epilepsy Behav 2023; 149:109523. [PMID: 37944286 DOI: 10.1016/j.yebeh.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Modern epilepsy science has overcome the traditional interpretation of a strict region-specific origin of epilepsy, highlighting the involvement of wider patterns of altered neuronal circuits. In selected cases, surgery may constitute a valuable option to achieve both seizure freedom and neurocognitive improvement. Although epilepsy is now considered as a brain network disease, the most relevant literature concerning the "connectome-based" epilepsy surgery mainly refers to adults, with a limited number of studies dedicated to the pediatric population. In this review, the Authors summarized the main current available knowledge on the relevance of WM surgical anatomy in epilepsy surgery, the post-surgical modifications of brain structural connectivity and the related clinical impact of such modifications within the pediatric context. In the last part, possible implications and future perspectives of this approach have been discussed, especially concerning the optimization of surgical strategies and the predictive value of the epilepsy network analysis for planning tailored approaches, with the final aim of improving case selection, presurgical planning, intraoperative management, and postoperative results.
Collapse
Affiliation(s)
| | - Luca de Palma
- Epilepsy and Movement Disorders Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | |
Collapse
|
3
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
4
|
Mohammad SA, Nashaat NH, Okba AAMB, Kilany A, Abdel-Rahman AS, Abd-Elhamed AM, Abdelraouf ER. Asymmetry Matters: Diffusion Tensor Tractography of the Uncinate Fasciculus in Children with Verbal Memory Deficits. AJNR Am J Neuroradiol 2022; 43:1042-1047. [PMID: 35680160 DOI: 10.3174/ajnr.a7535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Verbal declarative memory performance relies on frontotemporal connectivity. The uncinate fasciculus is a major association tract connecting the frontal and temporal lobes. Hemispheric asymmetries contribute to various cognitive and neurobehavioral abilities. Here we investigated microstructural alterations and hemispheric asymmetry of the uncinate fasciculus and their possible correlation to memory performance of children with learning disorders attributed to verbal memory deficits. MATERIALS AND METHODS Two groups of right-handed children with learning disorders attributed to verbal memory deficits and typically developing children (n = 20 and 22, respectively) underwent DTI on a 1.5T scanner. Tractography of the uncinate fasciculus in both hemispheres was performed, and fractional anisotropy and diffusivity indices (radial diffusivity, axial diffusivity, and trace) were obtained. The asymmetry index was calculated. Verbal memory was assessed using subsets of the Stanford Binet Intelligence Scale, 4th edition, a dyslexia assessment test, and the Illinois test of Psycholinguistic Abilities. Correlation between diffusion metrics and verbal memory performance was investigated in the learning disorders group. Also, hemispheric differences in each group were tested, and between-group comparisons were performed. RESULTS Children with learning disorders showed absence of the normal left-greater-than-right asymmetry of fractional anisotropy and the normal right-greater-than-left asymmetry of radial diffusivity seen in typically developing children. Correlation with verbal memory subsets revealed that the higher the fractional anisotropy and asymmetry index, the better the rapid naming performance (P <.05) was. CONCLUSIONS These findings demonstrated microstructural aberrations with reduction of hemispheric asymmetry of the uncinate fasciculus, which could disrupt the normal frontotemporal connectivity in children with learning disorders attributed to verbal memory deficits. This outcome gives more understanding of pathologic mechanisms underlying this disorder.
Collapse
Affiliation(s)
- S A Mohammad
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N H Nashaat
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| | - A A M B Okba
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - A Kilany
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| | - A S Abdel-Rahman
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - A M Abd-Elhamed
- From the Department of Diagnostic and Interventional Radiology and Molecular Imaging (S.A.M., A.A.M.B.O., A.S.A.-R., A.M.A.-E.), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - E R Abdelraouf
- Research on Children with Special Needs Department (N.H.N., A.K., E.R.A.), Medical Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Dimond D, Heo S, Ip A, Rohr CS, Tansey R, Graff K, Dhollander T, Smith RE, Lebel C, Dewey D, Connelly A, Bray S. Maturation and interhemispheric asymmetry in neurite density and orientation dispersion in early childhood. Neuroimage 2020; 221:117168. [DOI: 10.1016/j.neuroimage.2020.117168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/15/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
|
6
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
7
|
Age-related differences in neural activation and functional connectivity during the processing of vocal prosody in adolescence. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1418-1432. [PMID: 31515750 DOI: 10.3758/s13415-019-00742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to recognize others' emotions based on vocal emotional prosody follows a protracted developmental trajectory during adolescence. However, little is known about the neural mechanisms supporting this maturation. The current study investigated age-related differences in neural activation during a vocal emotion recognition (ER) task. Listeners aged 8 to 19 years old completed the vocal ER task while undergoing functional magnetic resonance imaging. The task of categorizing vocal emotional prosody elicited activation primarily in temporal and frontal areas. Age was associated with a) greater activation in regions in the superior, middle, and inferior frontal gyri, b) greater functional connectivity between the left precentral and inferior frontal gyri and regions in the bilateral insula and temporo-parietal junction, and c) greater fractional anisotropy in the superior longitudinal fasciculus, which connects frontal areas to posterior temporo-parietal regions. Many of these age-related differences in brain activation and connectivity were associated with better performance on the ER task. Increased activation in, and connectivity between, areas typically involved in language processing and social cognition may facilitate the development of vocal ER skills in adolescence.
Collapse
|