1
|
Huang K, Yao W, Zha M, Qin S, Li Y, Xu Y, Liu R, Ye R, Han Y, Zhu W, Teng Z, Du J, Liu X. Angiography-based hemodynamic features predict recurrent ischemic events after angioplasty and stenting of intracranial vertebrobasilar atherosclerotic stenosis. Eur Radiol 2024; 34:2352-2363. [PMID: 37723287 PMCID: PMC10957605 DOI: 10.1007/s00330-023-10209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES To assess the predictive value of hemodynamic features for stroke relapse in patients with intracranial vertebrobasilar atherosclerotic stenosis treated with percutaneous transluminal angioplasty and stenting (PTAS) using quantitative digital subtraction angiography (q-DSA). METHODS In this retrospective longitudinal study, patients with intracranial vertebrobasilar atherosclerotic stenosis and who underwent PTAS treatment between January 2012 and May 2020 were enrolled. The q-DSA assessment was performed before and after PTAS. ROIs 1-4 were placed along the vertebral artery, proximal and distal basilar artery, and posterior cerebral artery; ROIs 5-8 were in 5 mm and 10 mm proximal and distal to the lesion, respectively. Relative time to peak (rTTP) was defined as the difference in TTP between ROIs. Cox regression analyses were performed to determine risk factors for recurrent stroke. RESULTS A total of 137 patients (mean age, 62 years ± 10 [standard deviation], 83.2% males) were included, and 26 (19.0%) patients had stroke relapse during follow-up (median time of 42.6 months [interquartile range, 19.7-60.7]). Preprocedural rTTP4-1 (adjusted hazard ratio (HR) = 2.270; 95% CI 1.371-3.758; p = 0.001) and preprocedural rTTP8-5 (adjusted HR = 0.240; 95% CI 0.088-0.658; p = 0.006) were independently associated with the recurrent stroke. These hemodynamic parameters provided an incremental prognostic value for stroke relapse (AUC, 0.817 [0.704-0.931]; the net reclassification index, 0.431 [0.057-0.625]; and the integrated discrimination index, 0.140 [0.035-0.292]). CONCLUSIONS In patients with intracranial vertebrobasilar atherosclerosis treated with PTAS, preprocedural prolonged TTP of the target vessel and shortened trans-stenotic TTP difference were associated with stroke relapse. Q-DSA-defined hemodynamic parameters provided incremental predictive value over conventional parameters for stroke recurrence. CLINICAL RELEVANCE STATEMENT Quantitative DSA analysis enables intuitive observation and semi-quantitative evaluation of peri-therapeutic cerebral blood flow. More importantly, quantitative DSA-defined hemodynamic parameters have the potential for risk stratification of patients with intracranial atherosclerotic stenosis. KEY POINTS Semi-quantitative angiography-based parameters can reflect pre- and postprocedural subtle changes in blood flow in patients with intracranial atherosclerotic stenosis. Although angioplasty procedures can significantly improve blood flow status, patients with more restricted baseline blood flow still show a higher risk of stroke recurrence. Angiography-based hemodynamic features possess prognostic value and can serve as clinical markers to assess stroke risk of patients with intracranial atherosclerotic stenosis.
Collapse
Affiliation(s)
- Kangmo Huang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weihe Yao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingming Zha
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shanmei Qin
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingle Li
- Department of Neurology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Yan Xu
- Neusoft Medical Systems Co., Ltd., Shenyang, China
| | - Rui Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunfei Han
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Juan Du
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Neurology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| |
Collapse
|
2
|
Fujimura S, Yamanaka Y, Kan I, Nagao M, Otani K, Karagiozov K, Fukudome K, Ishibashi T, Takao H, Motosuke M, Yamamoto M, Murayama Y. Experimental study using phantom models of cerebral aneurysms and 4D-DSA to measure blood flow on 3D-color-coded images. Technol Health Care 2024; 32:3217-3230. [PMID: 38968064 PMCID: PMC11492053 DOI: 10.3233/thc-231906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The current 3D-iFlow application can only measure the arrival time of contrast media through intensity values. If the flow rate could be estimated by 3D-iFlow, patient-specific hemodynamics could be determined within the scope of normal diagnostic management, eliminating the need for additional resources for blood flow rate estimation. OBJECTIVE The aim of this study is to develop and validate a method for measuring the flow rate by data obtained from 3D-iFlow images - a prototype application in Four-dimensional digital subtraction angiography (4D-DSA). METHODS Using phantom model and experimental circuit with circulating glycerin solution, an equation for the relationship between contrast media intensity and flow rate was developed. Applying the equation to the aneurysm phantom models, the derived flow rate was evaluated. RESULTS The average errors between the derived flow rate and setting flow rate became larger when the glycerin flow and the X-rays from the X-ray tube of the angiography system were parallel to each other or when the measurement point included overlaps with other contrast enhanced areas. CONCLUSION Although the error increases dependent on the imaging direction and overlap of contrast enhanced area, the developed equation can estimate the flow rate using the image intensity value measured on 3D-iFlow based on 4D-DSA.
Collapse
Affiliation(s)
- Soichiro Fujimura
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuma Yamanaka
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Issei Kan
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Nagao
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Katharina Otani
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
- Siemens Healthcare K.K., Tokyo, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koji Fukudome
- Department of Mechanical Engineering, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Toshihiro Ishibashi
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takao
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Makoto Yamamoto
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Simgen A, Weyrich A, Dietrich P, Roumia S, Mühl-Benninghaus R, Yilmaz U, Reith W, Kettner M. Treatment of Wide-Necked Cerebral Aneurysms Using the WEB Device Including Flow Alteration Assessment With Color-Coded Imaging: A Single Center Experience. World Neurosurg X 2022; 17:100143. [PMCID: PMC9626383 DOI: 10.1016/j.wnsx.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Objective The Woven EndoBridge (WEB) device (MicroVention, Tustin, CA) has extended the treatment of cerebral aneurysms. Despite the fact that the WEB device has shown promising clinical results, little is known about the caused intra-aneurysmal flow alterations. Here we present our clinical experience with the WEB, including examining various syngo iFlow (Siemens AG, Erlangen, Germany) parameters to predict aneurysm occlusion. Methods We reviewed the data from patients with unruptured cerebral aneurysms treated with a WEB device between 2016 and 2020. Aneurysm occlusion and complications were assessed. Furthermore, different quantitative criteria were evaluated using syngo iFlow after digital subtraction angiography. Results A total of 26 patients hosting 26 cerebral aneurysms met the inclusion criteria. Follow-up was available for 21 patients, with a mean of 7.3 ± 6.3 months. A total of 71.4% (n = 15) of the aneurysms included were located in the anterior and 28.6% (n = 6) in the posterior circulation. Adequate aneurysm occlusion was achieved in 85.7% (n = 18). The iFlow parameters for reduced aneurysm outflow (ID-R) differed significantly from the parameters for reduced inflow (PI-R and PI-D) (P < 0.001). The parameters did not differ significantly between adequately and insufficiently occluded aneurysms. Only a trend towards a lower ID-R of insufficiently occluded aneurysms was observed (P = 0.063), indicating a potential predictive value for insufficient aneurysmal outflow. There was no treatment-related morbidity or mortality. Conclusions The applied syngo iFlow parameters confirmed that flow changes induced by the WEB device significantly affect outflow compared to inflow and have potential predictive value for adequate aneurysm occlusion.
Collapse
Key Words
- cerebral aneurysm
- syngo iflow
- web
- 2d, 2-dimensional
- boss, beaujon occlusion scale score
- cfd, computational fluid dynamics
- dsa, digital subtraction angiography
- id, intensity decrease
- id-r, intensity decrease ratio
- mrs, modified rankin scale
- pi, peak intensity
- pi-d, peak intensity delay
- pi-r, peak intensity ratio
- roi, region of interest
- tdc, time density curve
- ttp, time to peak
- web, woven endobridge
Collapse
Affiliation(s)
- Andreas Simgen
- To whom correspondence should be addressed: Andreas Simgen, M.D., Ph.D.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang K, Ren W, Sun YX, Wang XJ, Li CY, Wang ZL, Li TX, Gao BL. Angiographic Characteristics of Cerebral Perfusion and Hemodynamics of the Bridging Artery After Surgical Treatment of Unilateral Moyamoya Disease. Front Neurosci 2022; 16:922482. [PMID: 35774553 PMCID: PMC9239480 DOI: 10.3389/fnins.2022.922482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To investigate the characteristics of cerebral perfusion and hemodynamics of bypass grafting in the treatment of moyamoya disease (MMD) using the iFlow color-coded flow map in comparison with magnetic resonance imaging–perfusion-weighted imaging (MRI–PWI) and computational fluid dynamic (CFD) analysis. Materials and Methods Patients with MMD treated with bypass grafting who had undergone MRI PWI and digital subtraction angiography for iFlow color-coded map was retrospectively enrolled and CFD was performed for calculating the hemodynamic stresses around the bypass grafting. Results Forty-five patients with unilateral MMD treated with bypass surgery were enrolled. The bypass surgery was successful in all patients, with no severe neurological complications during the periprocedural period. Followed up for 4–12 months (median 5.5), the neurological function was good in all patients. The cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) were significantly (p < 0.05) improved in the middle cerebral artery distribution area on the surgical side before and after vascular bypass, and the difference of TTP (s) measured from the proximal bifurcation of common carotid artery to the confluence of sinus was also significant (p < 0.05). A significant (p < 0.05) positive correlation existed in the perfusion parameters between the iFlow blood perfusion and the MRI–PWI perfusion, with r-value for TTP of 0.765 (p < 0.01). The iFlow color-coded blood flow map showed warm color changes on the diseased side, similar to those on the contralateral side. In CFD analysis, the hemodynamic stresses were all improved, in and around the bypass grafting and distal vessels, which were beneficial to blood flow entering distal arterial branches. Conclusion The iFlow color-coded flow map can be used to analyze cerebral perfusion after bypass grafting for MMD, similar to MRI–PWI, and CFD can be used to analyze the hemodynamics after bypass grafting, revealing improved hemodynamics to promote blood flow entering distal arteries.
Collapse
Affiliation(s)
- Kun Zhang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Ren
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu-Xue Sun
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xin-Jun Wang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin-Jun Wang,
| | - Chao-Yue Li
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zi-Liang Wang
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Zi-Liang Wang,
| | - Tian-Xiao Li
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bu-Lang Gao
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Simgen A, Mayer C, Kettner M, Mühl-Benninghaus R, Reith W, Yilmaz U. Retrospective analysis of intracranial aneurysms after flow diverter treatment including color-coded imaging (syngo iFlow) as a predictor of aneurysm occlusion. Interv Neuroradiol 2022; 28:190-200. [PMID: 34107790 PMCID: PMC9131503 DOI: 10.1177/15910199211024056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/16/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Flow Diverters (FD) have immensely extended the treatment of cerebral aneurysms in the past years. Complete aneurysm occlusion is a process that often takes a certain amount of time and is usually difficult to predict. Our aim was to investigate different syngo iFlow parameters in order to predict aneurysm occlusion. METHODS Between 2014 and 2018 patients with unruptured cerebral aneurysms treated with a FD were reviewed. Aneurysm occlusion and complication rates have been assessed.In addition, various quantitative criteria were assessed using syngo iFlow before, after the intervention, and after short and long-term digital subtraction angiography (DSA). RESULTS A total of 66 patients hosting 66 cerebral aneurysms were included in this study. 87.9% (n = 58) aneurysms in the anterior and 12.1% (n = 8) in the posterior circulation were treated. Adequate aneurysm occlusion at long-term follow-up (19.05 ± 15.1 months) was achieved in 90.9% (n = 60). Adequately occluded aneurysm revealed a significantly greater peak intensity delay (PI-D, p = 0.008) and intensity decrease ratio (ID-R, p < 0.001) compared to insufficiently occluded aneurysms. Increased intra-aneurysmal contrast agent intensity (>100%) after FD implantation resulted in an ID-R < 1, which was associated with aneurysm growth during follow-up DSA. Retreatment with another FD due to foreshortening and/or aneurysm growth was performed in 10.6% (n = 7). Overall morbidity and mortality rates were 1.5% (n = 1) and 0%. CONCLUSION The applied syngo iFlow parameters were found to be useful in predicting adequate aneurysm occlusion and foresee aneurysm growth, which might indicate the implantation of another FD.
Collapse
Affiliation(s)
- Andreas Simgen
- Departments of Neuroradiology, Saarland University
Hospital, Homburg/Saar, Germany
| | - Christine Mayer
- Departments of Neuroradiology, Saarland University
Hospital, Homburg/Saar, Germany
| | - Michael Kettner
- Departments of Neuroradiology, Saarland University
Hospital, Homburg/Saar, Germany
| | | | - Wolfgang Reith
- Departments of Neuroradiology, Saarland University
Hospital, Homburg/Saar, Germany
| | - Umut Yilmaz
- Departments of Neuroradiology, Saarland University
Hospital, Homburg/Saar, Germany
| |
Collapse
|
6
|
Wu Q, Vassilevski Y, Simakov S, Liang F. Comparison of algorithms for estimating blood flow velocities in cerebral arteries based on the transport information of contrast agent: An in silico study. Comput Biol Med 2021; 141:105040. [PMID: 34809965 DOI: 10.1016/j.compbiomed.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022]
Abstract
While many algorithms have been proposed to estimate blood flow velocities based on the transport information of contrast agent acquired by digital subtraction angiography (DSA), most relevant studies focused on a single vessel, leaving a question open as to whether the algorithms would be suitable for estimating blood flow velocities in arterial systems with complex topological structures. In this study, a one-dimensional (1-D) modeling method was developed to simulate the transport of contrast agent in cerebral arterial networks with various anatomical variations or having occlusive disease, thereby generating an in silico database for examining the accuracies of some typical algorithms (i.e., time-of-center of gravity (TCG), shifted least-squares (SLS), and cross correlation (CC) algorithms) that estimate blood flow velocity based on the concentration-time curves (CTCs) of contrast agent. The results showed that the TCG algorithm had the best performance in estimating blood flow velocities in most cerebral arteries, with the accuracy being only mildly affected by anatomical variations of the cerebral arterial network. Nevertheless, the presence of a stenosis of moderate to high severity in the internal carotid artery could considerably impair the accuracy of the TCG algorithm in estimating blood flow velocities in some cerebral arteries where the transport of contrast agent was disturbed by strong collateral flows. In summary, the study suggests that the TCG algorithm may offer a promising means for estimating blood flow velocities based on CTCs of contrast agent monitored in cerebral arteries, provided that the shapes of CTCs are not highly distorted by collateral flows.
Collapse
Affiliation(s)
- Qiyuan Wu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuri Vassilevski
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Sergey Simakov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, 19991, Russia.
| |
Collapse
|
7
|
Winters H, Schüngel MS, Scherlach C, Mucha D, Thalwitzer J, Härtig W, Donitza A, Bailis N, Maybaum J, Hoffmann KT, Quäschling U, Schob S. First Experience of Three Neurovascular Centers With the p64MW-HPC, a Low-Profile Flow Diverter Designed for Proximal Cerebral Vessels With Antithrombotic Coating. Front Neurol 2021; 12:724705. [PMID: 34594297 PMCID: PMC8476967 DOI: 10.3389/fneur.2021.724705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: In the last decade, flow diversion (FD) has been established as hemodynamic treatment for cerebral aneurysms arising from proximal and distal cerebral arteries. However, two significant limitations remain—the need for 0.027” microcatheters required for delivery of most flow diverting stents (FDS), and long-term dual anti-platelet therapy (DAPT) in order to prevent FDS-associated thromboembolism, at the cost of increasing the risk for hemorrhage. This study reports the experience of three neurovascular centers with the p64MW-HPC, a FDS with anti-thrombotic coating that is implantable via a 0.021” microcatheter. Materials and methods: Three neurovascular centers contributed to this retrospective analysis of patients that had been treated with the p64MW-HPC between March 2020 and March 2021. Clinical data, aneurysm characteristics, and follow-up results, including procedural and post-procedural complications, were recorded. The hemodynamic effect was assessed using the O'Kelly–Marotta Scale (OKM). Results: Thirty-two patients (22 female, mean age 57.1 years) with 33 aneurysms (27 anterior circulation and six posterior circulation) were successfully treated with the p64MW-HPC. In 30/32 patients (93.75%), aneurysmal perfusion was significantly reduced immediately post implantation. Follow-up imaging was available for 23 aneurysms. Delayed aneurysm perfusion (OKM A3: 8.7%), reduction in aneurysm size (OKM B1-3: 26.1%), or sufficient separation from the parent vessel (OKM C1-3 and D1: 65.2%) was demonstrated at the last available follow-up after a mean of 5.9 months. In two cases, device thrombosis after early discontinuation of DAPT occurred. One delayed rupture caused a caroticocavernous fistula. The complications were treated sufficiently and all patients recovered without permanent significant morbidity. Conclusion: Treatment with the p64MW-HPC is safe and feasible and achieves good early aneurysm occlusion rates in the proximal intracranial circulation, which are comparable to those of well-established FDS. Sudden interruption of DAPT in the early post-interventional phase can cause in-stent thrombosis despite the HPC surface modification. Deliverability via the 0.021” microcatheter facilitates treatment in challenging vascular anatomies.
Collapse
Affiliation(s)
- Helge Winters
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany.,Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Cordula Scherlach
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dirk Mucha
- Institut für Radiologie und Neuroradiologie, Heinrich-Braun- Klinikum, Zwickau, Germany
| | - Jörg Thalwitzer
- Institut für Radiologie und Neuroradiologie, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Wolfgang Härtig
- Paul-Flechsig-Institut für Hirnforschung, Universität Leipzig, Leipzig, Germany
| | - Aneta Donitza
- Abteilung für Neuroradiologie, Klinik & Poliklinik für Radiologie, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Nikolaos Bailis
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jens Maybaum
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Karl Titus Hoffmann
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Ulf Quäschling
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Stefan Schob
- Abteilung für Neuroradiologie, Klinik & Poliklinik für Radiologie, Universitätsklinikum Halle, Halle (Saale), Germany
| |
Collapse
|
8
|
Ding A, Braschkat A, Guber A, Cattaneo G. New Concept of Patient-specific Flow Diversion Treatment of Intracranial Aneurysms : Design Aspects and in vitro Fluid Dynamics. Clin Neuroradiol 2020; 31:671-679. [PMID: 32651611 DOI: 10.1007/s00062-020-00930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Current flow diverter (FD) designs limit the possibilities to achieve ideal functional parameters for intra-aneurysmal flow alteration in the implanted state. In this work, we evaluate the technical feasibility of a new patient-specific FD concept and the impact on intra-aneurysmal flow reduction compared to standard FD. METHODS Based on a literature review, we defined functional requirements, followed by the design and manufacturing of two different prototypes, which we implanted in a patient-specific phantom model. Functional porosity distributions and contour parameters were evaluated in the implanted state and compared to standard FD. Subsequently, we carried out a series of particle image velocimetry (PIV) measurements, in order to assess the impact on intra-aneurysmal flow. RESULTS With both patient-specific prototypes, it was possible to achieve stronger intra-aneurysmal flow reductions in terms of maximum and mean velocity and vorticity than a standard FD; however, one design showed a strong sensitivity against malpositioning. Overall, fluid dynamics parameters correlated with geometrical aspects such as the porosity and its grade of homogeneity. Beyond that, we found influences by the FD contour projection within the aneurysm, especially connected to the formation of in-jets. CONCLUSION Our results show that there is a technically feasible concept, which enables a more specific adjustment of functional FD parameters and more effective intra-aneurysmal flow reduction. This could potentially lead to improvements in the efficacy of aneurysm occlusion in cases with challenging fluid dynamics.
Collapse
Affiliation(s)
- Andreas Ding
- Acandis GmbH, R&D, Pforzheim, Baden-Württemberg, Germany. .,, Weltzienstr. 24, 76135, Karlsruhe, Germany.
| | | | - Andreas Guber
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Giorgio Cattaneo
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
9
|
Quantitative Evaluation of Peripheral Arterial Blood Flow Using Peri-Interventional Fluoroscopic Parameters: An In Vivo Study Evaluating Feasibility and Clinical Utility. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9526790. [PMID: 32190691 PMCID: PMC7071793 DOI: 10.1155/2020/9526790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Purpose The purpose of this study was to evaluate various objective, quantitative, time-resolved fluoroscopic imaging parameters for use in the peri-interventional evaluation of stenotic peripheral arterial disease lesions. Material and Methods. Ten patients (median age, 64; age range, 52 to 79; 8 males, 2 females) with high-grade stenoses of either the superficial femoral or popliteal arteries who underwent endovascular treatment were included. During each intervention, two series of intraprocedural fluoroscopic images were collected, one preintervention and one postintervention. For each imaging series, four regions of interest (ROIs) were defined within the vessel lumen, with two ROIs being proximal (ROIs 1 and 2) and two being distal (ROIs 3 and 4) to the stenosis. The time-density curve (TDC) at each ROI was measured, and the resulting area under the curve (AUC), full width at half maximum (FWHM), and time-to-peak (TTP) were then calculated. Results The analysis of the TDC-derived parameters demonstrated significant differences between pre- and postinterventional flow rates in the ROI placed most distal to the stenosis, ROI 4. The AUC at ROI 4 (reported as a relative percentage of the AUC measured at ROI 1 proximal to the lesion) demonstrated a significant increase in the total flow (mean 67.84% vs. 128.68%, p=0.003). A significant reduction in FWHM at ROI 4 (mean 2.93 s vs. 1.87 s, p=0.003). A significant reduction in FWHM at ROI 4 (mean 2.93 s vs. 1.87 s, p=0.003). A significant reduction in FWHM at ROI 4 (mean 2.93 s vs. 1.87 s. Conclusion AUC, FWHM, and TTP are objective, reproducible, quantifiable tools for the peri-interventional fluoroscopic evaluation of vessel stenoses. When compared to the standard subjective interpretation of fluoroscopic imagery, AUC, FWHM, and TTP offer interventionalists the advantage of having an objective, complementary method of evaluating the success of a procedure, potentially allowing for more precisely targeted and quantitatively determined treatment goals and improved patient outcomes. This retrospective study was approved by the local ethics committee under the Number 372/2018BO2. The trial was registered at the German clinical trials register under the number DRKS00017813.
Collapse
|
10
|
Hussein AE, Shownkeen M, Thomas A, Stapleton C, Brunozzi D, Nelson J, Naumgart J, Linninger A, Atwal G, Alaraj A. 2D parametric contrast time-density analysis for the prediction of complete aneurysm occlusion at six months' post-flow diversion stent. Interv Neuroradiol 2020; 26:468-475. [PMID: 32102574 DOI: 10.1177/1591019920908205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Indications for the treatment of cerebral aneurysms with flow diversion stents are expanding. The current aneurysm occlusion rate at six months ranges between 60 and 80%. Predictability of complete vs. partial aneurysm occlusion is poorly defined. Here, we evaluate the angiographic contrast time-density as a predictor of aneurysm occlusion rate at six months' post-flow diversion stents. METHODS Patients with unruptured cerebral aneurysms proximal to the internal carotid artery terminus treated with single flow diversion stents were included. 2D parametric parenchymal blood flow software (Siemens-Healthineers, Forchheim, Germany) was used to calculate contrast time-density within the aneurysm and in the proximal adjacent internal carotid artery. The area under the curve ratio between the two regions of interests was assessed at baseline and after flow diversion stents deployment. The area under the curve ratio between completely vs. partially occluded aneurysms at six months' follow-up was compared. RESULTS Thirty patients with 31 aneurysms were included. Mean aneurysm diameter was 8 mm (range 2-28 mm). Complete occlusion was obtained in 19 aneurysms. Younger patients (P = 0.006) and smaller aneurysms (P = 0.046) presented higher chance of complete obliteration. Incomplete occlusion of the aneurysm was more likely if the area under the curve contrast time-density ratio showed absolute (P = 0.001) and relative percentage (P = 0.001) decrease after flow diversion stents deployment. Area under ROC curve was 0.85. CONCLUSION Negative change in the area under the curve ratio indicates less contrast stagnation in the aneurysm and lower chance of occlusion. These data provide a real-time analysis after aneurysm treatment. If validated in larger datasets, this can prompt input to the surgeon to place a second flow diversion stents.
Collapse
Affiliation(s)
- Ahmed E Hussein
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Meghana Shownkeen
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Andre Thomas
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Denise Brunozzi
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Andreas Linninger
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gursant Atwal
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Ma GMY, Dmytriw AA, Patel PA, Shkumat N, Krings T, Shroff MM, Muthusami P. Quantitative color-coded digital subtraction neuroangiography for pediatric arteriovenous shunting lesions. Childs Nerv Syst 2019; 35:2399-2403. [PMID: 31280353 DOI: 10.1007/s00381-019-04289-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several complex pediatric neurovascular conditions are amenable to endovascular treatment. Given the unique anatomical and physiological challenges in children, there is an ongoing need for tools and techniques that provide accurate information for treatment planning, while minimizing exposure to ionizing radiation and contrast. This is more so for neonates and infants with high-flow arteriovenous (AV) shunts that are challenging to assess using conventional techniques. OBJECTIVE In this brief report, we describe, through representative cases, the potential role of quantitative color-coded digital subtraction angiography (qDSA) in neuroendovascular procedures in children with high-flow AV shunting lesions. METHODS Images were obtained using an ArtisQ biplane system (Siemens Healthineers, Erlangen, Germany). Post-processing was performed at a dedicated workstation (Syngo, Siemens) using the iFlow module to generate color-coded maps of individual digital subtraction angiography runs. CONCLUSION Color-coded qDSA provides real-time quantitative information in high-flow AV shunting neurovascular lesions. This can potentially help direct treatment choices, optimize endovascular treatment protocols, monitor outcomes, and determine treatment end points.
Collapse
Affiliation(s)
- Grace M Y Ma
- Image Guided Therapy, Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5S, Canada.
| | - Adam A Dmytriw
- Image Guided Therapy, Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5S, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Premal A Patel
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, Bloomsbury, London, WC1E 6BT, UK
- Radiology Department, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Shkumat
- Image Guided Therapy, Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5S, Canada
| | - Timo Krings
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Manohar M Shroff
- Image Guided Therapy, Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5S, Canada
| | - Prakash Muthusami
- Image Guided Therapy, Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5S, Canada
| |
Collapse
|
12
|
Sadasivan C, Fiorella D. Preliminary in vitro angiographic comparison of the flow diversion behavior of Evolve and Pipeline devices. J Neurointerv Surg 2019; 12:616-620. [DOI: 10.1136/neurintsurg-2019-015455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/04/2022]
Abstract
Background and purposeFlow diverters are increasingly used to treat a broad category of cerebral aneurysms. We conducted an in vitro study to angiographically compare the flow diversion effect of Surpass Evolve from Stryker Neurovascular with the Pipeline Shield Embolization Device from Medtronic Neurovascular.MethodsThree copies each of three carotid aneurysm geometries were manufactured from silicone. Evolve and Pipeline flow diverters were deployed in one copy of each geometry; the third copy was used as Control. High-speed angiography was acquired under pulsatile flow in each replica, contrast concentration-time curves within the aneurysms were recorded, and the curves were quantified with six parameters. The parameters were statistically evaluated to compare the flow diversion effect of both devices.ResultsThe Evolve showed greater flow diversion trends in almost all intra-geometry comparisons than the Pipeline. When aggregated over the three geometries, the Evolve was statistically significantly better than the Pipeline in four of the six parameters, and about the same or better (not statistically significant) than the Pipeline in the other two parameters.ConclusionsThe Evolve device demonstrated greater in vitro flow diversion effects than Pipeline. Comparative efficacy of the devices will need to be adjudicated based on clinical outcomes.
Collapse
|
13
|
Wang T, Su H, Lou W, Gu J, He X, Chen L, Chen G, Song J, Shi W, Zee C, Chen BT. Evaluation of skeletal muscle perfusion in canine hind limb ischemia model using color-coded digital subtraction angiography. Microvasc Res 2018; 123:81-85. [PMID: 30576698 DOI: 10.1016/j.mvr.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To evaluate perfusion alterations in skeletal muscle in a canine hind limb ischemia model using color-coded digital subtraction angiography (CC-DSA). METHODS Twelve beagles underwent embolization at the branch of their left deep femoral artery. Right hind limbs were used as the control group. Angiography was performed before and immediately after embolization. Upon CC-DSA analysis, time to peak (TTP) was measured before embolization in both sides of the beagles' hind limbs at the middle iliac artery, and the distant, middle and proximal femoral artery. Regions of interest (ROI) peak and ROI peak time were symmetrically computed in proximal and distal thigh muscles before and immediately after embolization. The data were analyzed and compared using the Wilcoxon signed rank test. RESULTS Before embolization, ROI peak in the proximal thigh was lower than in the ipsilateral distal thigh, whereas ROI peak time in the proximal thigh was longer than in the distal thigh. In the iliac femoral artery, there was no significant difference in ROI peak, ROI peak time, or TTP between right and left sides. After embolization, ROI peaks in proximal and distal skeletal muscles of the left hind limb were significantly lower than on the contralateral side. ROI peak time was significantly longer in the left proximal and left distal thigh compared to the contralateral side. There were no significant changes in ROI peak or ROI peak time in the right proximal and right distal thigh compared to pre-embolization values. Changes in ROI peak and ROI peak time were larger in the left proximal than in the left distal thigh. CONCLUSION CC-DSA provided real-time measurement of changes in vascular hemodynamics and skeletal muscle perfusion without increasing X-ray usage or contrast agent dose.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Haobo Su
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wensheng Lou
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianping Gu
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu He
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Chen
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoping Chen
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Song
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanyin Shi
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chishing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
14
|
Reliability and Accuracy of Peri-Interventional Stenosis Grading in Peripheral Artery Disease Using Color-Coded Quantitative Fluoroscopy: A Phantom Study Comparing a Clinical and Scientific Postprocessing Software. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6180138. [PMID: 30140698 PMCID: PMC6081527 DOI: 10.1155/2018/6180138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022]
Abstract
Purpose To assess quantitative stenosis grading by color-coded fluoroscopy using an in vitro pulsatile flow phantom. Methods Three different stenotic tubes (80%, 60%, and 40% diameter restriction) and a nonstenotic reference tube were compared regarding their different flow behavior by using contrast-enhanced fluoroscopy with a flat-detector system for visualisation purposes. Time-density curves (TDC), area under the curve (AUC), time-to-peak (TTP), and different ROI sizes were analyzed in three independent measurements using two different postprocessing software solutions. In addition, exemplary TDCs of a patient with a high-grade stenosis before and after stent angioplasty were acquired. Results Color-coded fluoroscopy enabled depiction of differences in AUC and TDC between high-grade (80%), middle (60%), low-grade (40%), and nonstenotic tubes. The best correlation between high-, middle-, and low-grade stenosis was appreciated in ROIs behind the stenosis. This effect was enhanced by using longer integration times (5s, 7s) and a maximum frame rate of image acquisition for analysis (correlation coefficient rho=0.9284 at 5s). TTP showed no significant differences between high- and low-grade stenosis. Conclusions Various clinical studies in the literature already demonstrated reproducible and reliable stenosis grading by analyzing TDCs acquired with color-coded fluoroscopy. In contrast to TTP, AUC values derived in ROIs behind the stenosis proved to be reliable parameters for stenosis grading. However, our results also demonstrate that several factors are able to significantly impact the evaluation of AUC values. More precisely, accuracy of acquired AUC values can be improved by choosing longer integration times, a large ROI size adapted to the vessel diameter, and a higher frame rate of image acquisition.
Collapse
|
15
|
A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model. Ann Biomed Eng 2018; 46:841-848. [PMID: 29488139 DOI: 10.1007/s10439-018-2002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|