1
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024:10.1007/s00234-024-03476-y. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Sun PZ. Quasi-steady-state (QUASS) reconstruction enhances T 1 normalization in apparent exchange-dependent relaxation (AREX) analysis: A reevaluation of T 1 correction in quantitative CEST MRI of rodent brain tumor models. Magn Reson Med 2024; 92:236-245. [PMID: 38380727 PMCID: PMC11055669 DOI: 10.1002/mrm.30056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE The apparent exchange-dependent relaxation (AREX) analysis has been proposed as an effective means to correct T1 contribution in CEST quantification. However, it has been recognized that AREX T1 correction is not straightforward if CEST scans are not performed under the equilibrium condition. Our study aimed to test if quasi-steady-state (QUASS) reconstruction could boost the accuracy of the AREX metric under common non-equilibrium scan conditions. THEORY AND METHODS Numerical simulation and in vivo scans were performed to assess the AREX metric accuracy. The CEST signal was simulated under different relaxation delays, RF saturation amplitudes, and durations. The AREX was evaluated as a function of the bulk water T1 and labile proton concentration using the multiple linear regression model. AREX MRI was also assessed in brain tumor rodent models, with both apparent CEST scans and QUASS reconstruction. RESULTS Simulation showed that the AREX calculation from apparent CEST scans, under non-equilibrium conditions, had significant dependence on labile proton fraction ratio, RF saturation time, and T1. In comparison, QUASS-boosted AREX depended on the labile proton fraction ratio without significant dependence on T1 and RF saturation time. Whereas the apparent (2.7 ± 0.8%) and QUASS MTR asymmetry (2.8 ± 0.8%) contrast between normal and tumor regions of interest (ROIs) were significant, the difference was small. In comparison, AREX contrast between normal and tumor ROIs calculated from the apparent CEST scan and QUASS reconstruction was 3.8 ± 1.1%/s and 4.4 ± 1.2%/s, respectively, statistically different from each other. CONCLUSIONS AREX analysis benefits from the QUASS-reconstructed equilibrium CEST effect for improved T1 correction and quantitative CEST analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Teng M, Wang M, He F, Liang W, Zhang G. Arterial Spin Labeling and Amide Proton Transfer Imaging can Differentiate Glioblastoma from Brain Metastasis: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:e702-e711. [PMID: 38072160 DOI: 10.1016/j.wneu.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Currently, arterial spin labeling (ASL) and amide proton transfer (APT) imaging have shown potential for distinguishing glioblastoma from brain metastases. Thus, a meta-analysis was conducted to investigate this further. METHODS An extensive and comprehensive search was conducted in 6 English and Chinese databases according to predefined inclusion and exclusion criteria, encompassing data up to July 2023. Data from eligible literature were extracted, and bivariate models were employed to calculate pooled sensitivities, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic curve. RESULTS The meta-analysis included 11 articles. For ASL, the pooled sensitivity was 0.77 (95% confidence interval [CI], 0.63-0.87), and the pooled specificity was 0.87 (95% CI, 0.77-0.93). The pooled PLR was 5.89 (95% CI, 2.97-11.69), the pooled NLR was 0.26 (95% CI, 0.15-0.47), the pooled DOR was 22.33 (95% CI, 6.89-72.34), and AUC was 0.90 (95% CI, 0.87-0.92). For APT imaging, the pooled sensitivity was 0.78 (95% CI, 0.70-0.85), and the pooled specificity was 0.86 (95% CI, 0.77-0.92). The pooled PLR was 5.51 (95% CI, 3.24-9.37), the pooled NLR was 0.25 (95% CI, 0.17-0.37), the pooled DOR was 21.99 (95% CI, 10.28-47.03), and the AUC was 0.90 (95% CI, 0.87-0.92). CONCLUSIONS This meta-analysis suggest that both ASL and APT imaging exhibit high accuracy in distinguishing between glioblastoma and brain metastasis.
Collapse
Affiliation(s)
- Minghao Teng
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Minshu Wang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Feng He
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Guisheng Zhang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China.
| |
Collapse
|
5
|
Yao L, Cheng N, Chen AQ, Wang X, Gao M, Kong QX, Kong Y. Advances in Neuroimaging and Multiple Post-Processing Techniques for Epileptogenic Zone Detection of Drug-Resistant Epilepsy. J Magn Reson Imaging 2023. [PMID: 38014782 DOI: 10.1002/jmri.29157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Among the approximately 20 million patients with drug-resistant epilepsy (DRE) worldwide, the vast majority can benefit from surgery to minimize seizure reduction and neurological impairment. Precise preoperative localization of epileptogenic zone (EZ) and complete resection of the lesions can influence the postoperative prognosis. However, precise localization of EZ is difficult, and the structural and functional alterations in the brain caused by DRE vary by etiology. Neuroimaging has emerged as an approach to identify the seizure-inducing structural and functional changes in the brain, and magnetic resonance imaging (MRI) and positron emission tomography (PET) have become routine noninvasive imaging tools for preoperative evaluation of DRE in many epilepsy treatment centers. Multimodal neuroimaging offers unique advantages in detecting EZ, especially in improving the detection rate of patients with negative MRI or PET findings. This approach can characterize the brain imaging characteristics of patients with DRE caused by different etiologies, serving as a bridge between clinical and pathological findings and providing a basis for individualized clinical treatment plans. In addition to the integration of multimodal imaging modalities and the development of special scanning sequences and image post-processing techniques for early and precise localization of EZ, the application of deep machine learning for extracting image features and deep learning-based artificial intelligence have gradually improved diagnostic efficiency and accuracy. These improvements can provide clinical assistance for precisely outlining the scope of EZ and indicating the relationship between EZ and functional brain areas, thereby enabling standardized and precise surgery and ensuring good prognosis. However, most existing studies have limitations imposed by factors such as their small sample sizes or hypothesis-based study designs. Therefore, we believe that the application of neuroimaging and post-processing techniques in DRE requires further development and that more efficient and accurate imaging techniques are urgently needed in clinical practice. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lei Yao
- Clinical Medical College, Jining Medical University, Jining, China
| | - Nan Cheng
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - An-Qiang Chen
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xun Wang
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ming Gao
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Kong
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
6
|
Cheng D, Zhuo Z, Zhang P, Qu L, Duan Y, Xu X, Xie C, Liu X, Haller S, Barkhof F, Zhang L, Liu Y. Amide proton transfer-weighted imaging of pediatric brainstem glioma and its predicted value for H3 K27 alteration. Acta Radiol 2023; 64:2922-2930. [PMID: 37722801 DOI: 10.1177/02841851231197503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
BACKGROUND Non-invasive determination of H3 K27 alteration of pediatric brainstem glioma (pedBSG) remains a clinical challenge. PURPOSE To predict H3 K27-altered pedBSG using amide proton transfer-weighted (APTw) imaging. MATERIAL AND METHODS This retrospective study included patients with pedBSG who underwent APTw imaging and had the H3 K27 alteration status determined by immunohistochemical staining. The presence or absence of foci of markedly increased APTw signal in the lesion was visually assessed. Quantitative APTw histogram parameters within the entire solid portion of tumors were extracted and compared between H3 K27-altered and wild-type groups using Student's t-test. The ability of APTw for differential diagnosis was evaluated using logistic regression. RESULTS Sixty pedBSG patients included 48 patients with H3 K27-altered tumor (aged 2-48 years) and 12 patients with wild-type tumor (aged 3-53 years). Visual assessment showed that the foci of markedly increased APTw signal intensity were more common in the H3 K27-altered group than in wild-type group (60% vs. 16%, P = 0.007). Histogram parameters of APTw signal intensity in the H3 K27-altered group were significantly higher than those in the wild-type group (median, 2.74% vs. 2.22%, P = 0.02). The maximum (area under the receiver operating characteristic curve [AUC] = 0.72, P = 0.01) showed the highest diagnostic performance among histogram analysis. A combination of age, median and maximum APTw signal intensity could predict H3 K27 alteration with a sensitivity of 81%, specificity of 75% and AUC of 0.80. CONCLUSION APTw imaging may serve as an imaging biomarker for H3 K27 alteration of pedBSGs.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liying Qu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cong Xie
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Beijing, China
| | - Sven Haller
- Department of Imaging and Medical Informatics, University Hospitals of Geneva and Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Jellema PEJ, Wijnen JP, De Luca A, Mutsaerts HJMM, Obdeijn IV, van Baarsen KM, Lequin MH, Hoving EW. Advanced intraoperative MRI in pediatric brain tumor surgery. Front Physiol 2023; 14:1098959. [PMID: 37123260 PMCID: PMC10134397 DOI: 10.3389/fphys.2023.1098959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI (ioMRI) provides "real-time" imaging, allowing for evaluation of the extent of resection and detection of complications. The use of advanced MRI sequences could potentially provide additional physiological information that may aid in the preservation of healthy brain regions. This review aims to determine the added value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to conventional imaging. Methods: Our systematic literature search identified relevant articles on PubMed using keywords associated with pediatrics, ioMRI, and brain tumors. The literature search was extended using the snowball technique to gather more information on advanced MRI techniques, their technical background, their use in adult ioMRI, and their use in routine pediatric brain tumor care. Results: The available literature was sparse and demonstrated that advanced sequences were used to reconstruct fibers to prevent damage to important structures, provide information on relative cerebral blood flow or abnormal metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The explorative literature search revealed developments within each advanced MRI field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton transfer-weighted imaging, that have been studied in adult ioMRI but have not yet been applied in pediatrics. These techniques could have the potential to provide more accurate fiber tractography, information on intraoperative cerebral perfusion, and to match gadolinium-based T1w images without using a contrast agent. Conclusion: The potential added value of advanced MRI in the intraoperative setting for pediatric brain tumors is to prevent damage to important structures, to provide additional physiological or metabolic information, or to indicate the onset of postoperative changes. Current developments within various advanced ioMRI sequences are promising with regard to providing in-depth tissue information.
Collapse
Affiliation(s)
- Pien E. J. Jellema
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- *Correspondence: Pien E. J. Jellema,
| | - Jannie P. Wijnen
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Alberto De Luca
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Iris V. Obdeijn
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kirsten M. van Baarsen
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Maarten H. Lequin
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Eelco W. Hoving
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|
9
|
Zhang HW, Liu XL, Zhang HB, Li YQ, Wang YL, Feng YN, Deng K, Lei Y, Huang B, Lin F. Differentiation of Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration. Front Oncol 2022; 12:886968. [PMID: 35646626 PMCID: PMC9132094 DOI: 10.3389/fonc.2022.886968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gliomas are more malignant and invasive than meningiomas. Objective To distinguish meningiomas from low-grade/high-grade gliomas (LGGs/HGGs) using amide proton transfer imaging (APT) combined with conventional magnetic resonance imaging (MRI) and to explore the application of APT in evaluating brain tumour invasiveness. Materials and Methods The imaging data of 50 brain tumors confirmed by pathology in patients who underwent APT scanning in our centre were retrospectively analysed. Of these tumors, 25 were meningiomas, 10 were LGGs, and 15 were HGGs. The extent of the tumour-induced range was measured on APT images, T2-weighted imaging (T2WI), and MRI enhancement; additionally, and the degree of enhancement was graded. Ratios (RAPT/T2 and RAPT/E) were obtained by dividing the range of changes observed by APT by the range of changes observed via T2WI and MR enhancement, respectively, and APTmean values were measured. The Mann–Whitney U test was used to compare the above measured values with the pathological results obtained for gliomas and meningiomas, the Kruskal-Wallis test was used to compare LGGs, HGGs and meningiomas, and Dunn’s test was used for pairwise comparisons. In addition, receiver operating characteristic (ROC) curves were drawn. Results The Mann–Whitney U test showed that APTmean (p=0.005), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) values were statistically significant in the identification of meningioma and glioma. The Kruskal-Wallis test showed that the parameters APTmean, RAPT/T2, RAPT/E and the degree of enhancement are statistically significant. Dunn’s test revealed that RAPT/T2 (p=0.004) and RAPT/E (p=0.008) could be used for the identification of LGGs and meningiomas. APTmean (p<0.001), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) could be used for the identification of HGGs and meningiomas. APTmean (p<0.001) was statistically significant in the comparison of LGGs and HGGs. ROC curves showed that RAPT/T2 (area under the curve (AUC)=0.947) and RAPT/E (AUC=0.919) could be used to distinguish gliomas from meningiomas. Conclusion APT can be used for the differential diagnosis of meningioma and glioma, but APTmean values can only be used for the differential diagnosis of HGGs and meningiomas or HGGs and LGGs. Gliomas exhibit more obvious changes than meningiomas in APT images of brain tissue; this outcome may be caused by brain infiltration.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hong-Bo Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying-Qi Li
- Department of Radiology, Songgang People's Hospital, Shenzhen, China
| | - Yu-Li Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Ning Feng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kan Deng
- Research Department, Philips Healthcare, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
10
|
Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI. Cancers (Basel) 2022; 14:cancers14081907. [PMID: 35454814 PMCID: PMC9031574 DOI: 10.3390/cancers14081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Glioblastoma (GBM), the most frequent and malignant histological type of glioma, is associated with a very high mortality rate. MRI is a useful method for the evaluation of tumor growth. However, there are few studies that have quantitatively evaluated the changes in disease state after TMZ treatment against GBM, and it is not fully understood how the effects of treatment are reflected in the quantitative values measured on MRI. We used the C6 glioma rat model to evaluate the tumor changes due to chemotherapy at different doses of TMZ in terms of quantitative values measured by neurite orientation dispersion and density imaging (NODDI) and amide proton transfer (APT) imaging using 7T-MRI. These methods can evaluate the microstructural changes caused by TMZ-induced tumor growth inhibition. Abstract This study aimed to evaluate tumor changes due to chemotherapy with temozolomide (TMZ) in terms of quantitative values measured by APT imaging and NODDI. We performed TMZ treatment (administered orally by gavage to the TMZ-40 mg and TMZ-60 mg groups) on 7-week-old male Wistar rats with rat glioma C6 implanted in the right brain. T2WI, APT imaging, diffusion tensor imaging (DTI), and NODDI were performed on days 7 and 14 after implantation using 7T-MRI, and the calculated quantitative values were statistically compared. Then, HE staining was performed on brain tissue at day 7 and day 14 for each group to compare the results with the MR images. TMZ treatment inhibited tumor growth and necrotic area formation. The necrotic areas observed upon hematoxylin and eosin (HE) staining were consistent with the MTR low-signal areas observed upon APT imaging. The intracellular volume fraction (ICVF) map of the NODDI could best show the microstructure of the tumor, and its value could significantly highlight the difference in treatment effects at different TMZ doses. APT imaging and NODDI can be used to detect the microstructural changes caused by TMZ-induced tumor growth inhibition. The ICVF may be useful as a parameter for determining the effect of TMZ.
Collapse
|
11
|
Abstract
This article reviews recent advances in the use of standard and advanced imaging techniques for diagnosis and treatment of central nervous system (CNS) tumors, including glioma and brain metastasis. Following the recent transition from a histology-based approach in classifying CNS tumors to one that integrates histology with the molecular information of tumor, the approaches for imaging CNS tumors have also been adapted to this new framework. Some challenges related to the diagnosis and treatment of CNS tumors, such as differentiating tumor from treatment-related imaging changes, require further progress to implement advanced imaging for clinical use.
Collapse
Affiliation(s)
- Raymond Y Huang
- Department of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Whitney B Pope
- Radiology, Section of Neuroradiology, Brain Tumor Imaging, UCLA Medical Center, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Chen W, Mao L, Li L, Wei Q, Hu S, Ye Y, Feng J, Liu B, Liu X. Predicting Treatment Response of Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Using Amide Proton Transfer MRI Combined With Diffusion-Weighted Imaging. Front Oncol 2021; 11:698427. [PMID: 34277445 PMCID: PMC8281887 DOI: 10.3389/fonc.2021.698427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate amide proton weighted (APTw) MRI combined with diffusion-weighted imaging (DWI) in predicting neoadjuvant chemoradiotherapy (NCRT) response in patients with locally advanced rectal cancer (LARC). Methods 53 patients with LARC were enrolled in this retrospective study. MR examination including APTw MRI and DWI was performed before and after NCRT. APTw SI, ADC value, tumor size, CEA level before and after NCRT were assessed. The difference of the above parameters between before and after NCRT was calculated. The tumor regression grading (TRG) was assessed by American Joint Committee on Cancer’s Cancer Staging Manual AJCC 8th score. The Shapiro-Wilk test, paired t-test and Wilcoxon Signed Ranks test, two-sample t-test, Mann-Whitney U test and multivariate analysis were used for statistical analysis. Results Of the 53 patients, 19 had good responses (TRG 0-1), 34 had poor responses (TRG 2-3). After NCRT, all the rectal tumors demonstrated decreased APT values, increased ADC values, reduced tumor volumes and CEA levels (all p < 0.001). Good responders demonstrated higher pre-APT values, higher Δ APT values, lower pre- ADC values and higher Δ tumor volumes than poor responders. Pre-APT combined with pre-ADC achieved the best diagnostic performance, with AUC of 0.895 (sensitivity of 85.29%, specificity of 89.47%, p < 0.001) in predicting good response to NCRT. Conclusion The combination of APTw and DWI may serve as a noninvasive biomarker for evaluating and identifying response to NCRT in LARC patients.
Collapse
Affiliation(s)
- Weicui Chen
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liting Mao
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Li
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiurong Wei
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Hu
- Department of Pathology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieping Feng
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Li Y, Lin CY, Qi YF, Wang X, Chen B, Zhou HL, Ren J, Yang JJ, Xiang Y, He YL, Xue HD, Jin ZY. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status. Magn Reson Imaging 2021; 78:18-24. [PMID: 33556484 DOI: 10.1016/j.mri.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND To evaluate 3-dimensional amide proton transfer weighted (APTw) imaging for type I endometrial carcinoma (EC), and investigate correlations of Ki-67 labelling index with APTw and intravoxel incoherent motion (IVIM) imaging. METHODS 54 consecutive patients suspected of endometrial lesions underwent pelvic APTw and IVIM imaging on a 3 T MR scanner. APTw values and IVIM-derived parameters (Dt, D*, f) were independently measured by two radiologists on 22 postoperative pathological confirmed of type I EC lesions. Results were compared between histological grades and Ki-67 proliferation groups. ROC analysis was performed. Pearson's correlation analysis was performed for APTw values and IVIM-derived parameters with Ki-67 labeling index. RESULTS APTw values and Dt, D*, f of all type I EC were 2.9 ± 0.1%, 0.677 ± 0.027 × 10-3 mm2/s, 31.801 ± 11.492 × 10-3 mm2/s, 0.179 ± 0.050 with inter-observer ICC 0.996, 0.850, 0.956, 0.995, respectively. APTw values of Ki-67 low-proliferation group (<30%, n = 8) were 2.5 ± 0.2%, significantly lower than the high-proliferation group (>30%, n = 14) with APTw values of 3.1 ± 0.1% (p = 0.016). Area under the curve was 0.768. APTw values of type I EC were moderately positively correlated with Ki-67 labelling index (r = 0.583, p = 0.004). There was no significant difference of Dt (p = 0.843), D* (p = 0.262), f (p = 0.553) between the two groups. No correlation was found between IVIM-derived parameters and Ki-67 labelling index (Dt, p = 0.717; D* p = 0.151; f, p = 0.153). CONCLUSION 3D TSE APTw imaging is a feasible approach for detecting type I EC. Ki-67 labeling index positively moderately correlates with APTw not with IVIM.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Cheng-Yu Lin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Ya-Fei Qi
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | | | - Bo Chen
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Hai-Long Zhou
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Jun-Jun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
15
|
Adamczyk B, Węgrzyn K, Wilczyński T, Maciarz J, Morawiec N, Adamczyk-Sowa M. The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy. ACTA ACUST UNITED AC 2021; 57:medicina57030294. [PMID: 33809843 PMCID: PMC8004256 DOI: 10.3390/medicina57030294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Epilepsy is a common neurological disorder characterized by chronic, unprovoked and recurrent seizures, which are the result of rapid and excessive bioelectric discharges in nerve cells. Neuroimaging is used to detect underlying structural abnormalities which may be associated with epilepsy. This paper reviews the most common abnormalities, such as hippocampal sclerosis, malformations of cortical development and vascular malformation, detected by neuroimaging in patients with epilepsy to help understand the correlation between these changes and the course, treatment and prognosis of epilepsy. Magnetic resonance imaging (MRI) reveals structural changes in the brain which are described in this review. Recent studies indicate the usefulness of additional imaging techniques. The use of fluorodeoxyglucose positron emission tomography (FDG-PET) improves surgical outcomes in MRI-negative cases of focal cortical dysplasia. Some techniques, such as quantitative image analysis, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), diffusion tensor imaging (DTI) and fibre tract reconstruction, can detect small malformations—which means that some of the epilepsies can be treated surgically. Quantitative susceptibility mapping may become the method of choice in vascular malformations. Neuroimaging determines appropriate diagnosis and treatment and helps to predict prognosis.
Collapse
|
16
|
Sartoretti E, Sartoretti T, Wyss M, Reischauer C, van Smoorenburg L, Binkert CA, Sartoretti-Schefer S, Mannil M. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases. Sci Rep 2021; 11:5506. [PMID: 33750899 PMCID: PMC7943598 DOI: 10.1038/s41598-021-85168-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
We sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.
Collapse
Affiliation(s)
- Elisabeth Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Thomas Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Philips Healthsystems, Zürich, Switzerland
| | - Carolin Reischauer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| | | | | | | | - Manoj Mannil
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland. .,Institute of Clinical Radiology, University Hospital Münster, University of Münster, Albrecht-Schweitzer-Campus 1, E48149, Münster, Germany.
| |
Collapse
|
17
|
Durmo F, Rydhög A, Testud F, Lätt J, Schmitt B, Rydelius A, Englund E, Bengzon J, van Zijl P, Knutsson L, Sundgren PC. Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLoS One 2020; 15:e0244003. [PMID: 33373375 PMCID: PMC7771875 DOI: 10.1371/journal.pone.0244003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Radiological assessment of primary brain neoplasms, both high (HGG) and low grade tumors (LGG), based on contrast-enhancement alone can be inaccurate. We evaluated the radiological value of amide proton transfer weighted (APTw) MRI as an imaging complement for pre-surgical radiological diagnosis of brain tumors. METHODS Twenty-six patients were evaluated prospectively; (22 males, 4 females, mean age 55 years, range 26-76 years) underwent MRI at 3T using T1-MPRAGE pre- and post-contrast administration, conventional T2w, FLAIR, and APTw imaging pre-surgically for suspected primary/secondary brain tumor. Assessment of the additional value of APTw imaging compared to conventional MRI for correct pre-surgical brain tumor diagnosis. The initial radiological pre-operative diagnosis was based on the conventional contrast-enhanced MR images. The range, minimum, maximum, and mean APTw signals were evaluated. Conventional normality testing was performed; with boxplots/outliers/skewness/kurtosis and a Shapiro-Wilk's test. Mann-Whitney U for analysis of significance for mean/max/min and range APTw signal. A logistic regression model was constructed for mean, max, range and Receiver Operating Characteristic (ROC) curves calculated for individual and combined APTw signals. RESULTS Conventional radiological diagnosis prior to surgery/biopsy was HGG (8 patients), LGG (12 patients), and metastasis (6 patients). Using the mean and maximum: APTw signal would have changed the pre-operative evaluation the diagnosis in 8 of 22 patients (two LGGs excluded, two METs excluded). Using a cut off value of >2.0% for mean APTw signal integral, 4 of the 12 radiologically suspected LGG would have been diagnosed as high grade glioma, which was confirmed by histopathological diagnosis. APTw mean of >2.0% and max >2.48% outperformed four separate clinical radiological assessments of tumor type, P-values = .004 and = .002, respectively. CONCLUSIONS Using APTw-images as part of the daily clinical pre-operative radiological evaluation may improve diagnostic precision in differentiating LGGs from HGGs, with potential improvement of patient management and treatment.
Collapse
Affiliation(s)
- Faris Durmo
- Division of Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Rydhög
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | | | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | | | - Anna Rydelius
- Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Division of Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
18
|
Xu Z, Ke C, Liu J, Xu S, Han L, Yang Y, Qian L, Liu X, Zheng H, Lv X, Wu Y. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T. Eur J Radiol 2020; 134:109466. [PMID: 33307459 DOI: 10.1016/j.ejrad.2020.109466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Accurate glioma grading and IDH mutation status prediction are critically essential for individualized preoperative treatment decisions. This study aims to compare the diagnostic performance of magnetic resonance (MR) amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction. METHOD Fifty-one glioma patients without treatment were retrospectively included. APT-weighted (APTw) effect and DKI indices, including mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK), and kurtosis FA (KFA) were obtained from APT and diffusion-weighted images, respectively. DKI indices in tumors were normalized to that in contralateral normal appearing white matter (CNAWM) and the APTw difference (ΔAPTw) between the two regions was calculated. Student's t-test, one-way ANOVA and ROC analyses were conducted. RESULTS Among the enrolled 51 patients, 13 had glioma-II, 17 had glioma-III and 21 had glioma-IV. 25 patients were diagnosed as IDH-mutant, and 26 as IDH-wild type. MD and MK differed significantly between glioma-IV and glioma II/III (P < 0.05), but not between glioma-II and glioma-III. FA and KFA showed no significant difference among the three groups (P > 0.05). IDH-mutant group exhibited significantly higher MD and lower FA, MK and ΔAPTw than IDH-wild type (P < 0.05), whereas the two groups showed comparable KFA values. In contrast, ΔAPTw differed significantly across tumor grades and IDH mutation status (P < 0.05), with consistently better discriminatory performance than DKI indices in glioma grading and IDH mutation status prediction. CONCLUSIONS APT imaging was superior to DKI in glioma grading and IDH mutation status prediction, benefiting accurate diagnoses and treatment decisions.
Collapse
Affiliation(s)
- Zongwei Xu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chao Ke
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jie Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Shijie Xu
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
19
|
Sotirios B, Demetriou E, Topriceanu CC, Zakrzewska Z. The role of APT imaging in gliomas grading: A systematic review and meta-analysis. Eur J Radiol 2020; 133:109353. [PMID: 33120241 DOI: 10.1016/j.ejrad.2020.109353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Gliomas are diagnosed and staged by conventional MRI. Although non-conventional sequences such as perfusion-weighted MRI may differentiate low-grade from high-grade gliomas, they are not reliable enough yet. The latter is of paramount importance for patient management. In this regard, we aim to evaluate the role of Amide Proton Transfer (APT) imaging in grading gliomas as a non-invasive tool to provide reliable differentiation across tumour grades. METHODS A systematic search of PubMed, Medline and Embase was conducted to identify relevant publications between 01/01/2008 and 15/09/2020. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess studies' quality. A random-effects model standardized mean difference meta-analysis was performed to assess APT's ability to differentiate low-grade gliomas (LGGs) from high-grade gliomas (HGGs), WHO 2-4 grades, wild-type from mutated isocitrate dehydrogenase (IDH) gliomas, methylated from unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gliomas. Area under the curve (AUC) of the Receiver Operating Characteristic (ROC) meta-analysis was employed to assess the diagnostic performance of APT. RESULTS 23 manuscripts met the inclusion criteria and reported the use of APT to differentiate glioma grades with histopathology as reference standard. APT-weighted signal intensity can differentiate LGGs from HGGs with an estimated size effect of (-1.61 standard deviations (SDs), p < 0.0001), grade 2 from grade 3 (-1.83 SDs, p = 0.005), grade 2 from grade 4 (-2.34 SDs, p < 0.0001) and IDH wild-type from IDH mutated (0.94 SDs, p = 0.003) gliomas. The combined AUC of 0.84 highlights the good diagnostic performance of APT-weighted imaging in differentiating LGGs from HGGs. CONCLUSIONS APT imaging is an exciting prospect in differentiating LGGs from HGGs and with potential to predict the histopathological grade. However, more studies are required to optimize and improve its reliability.
Collapse
Affiliation(s)
- Bisdas Sotirios
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom; Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Eleni Demetriou
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | | |
Collapse
|
20
|
Park YW, Ahn SS, Kim EH, Kang SG, Chang JH, Kim SH, Zhou J, Lee SK. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters. Neuroradiology 2020; 63:363-372. [PMID: 32879995 DOI: 10.1007/s00234-020-02542-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the incremental value of amide proton transfer (APT) imaging to diffusion tensor imaging (DTI), dynamic susceptibility contrast (DSC) imaging, and dynamic contrast-enhanced (DCE) imaging in differentiating recurrent diffuse gliomas (World Health Organization grade II-IV) from treatment-induced change after concurrent chemoradiotherapy or radiotherapy. METHODS This study included 36 patients (25 patients with recurrent gliomas and 11 with treatment-induced changes) with post-treatment gliomas. The mean values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), normalized cerebral blood volume (nCBV), normalized cerebral blood flow, volume transfer constant, rate transfer coefficient, extravascular extracellular volume fraction, plasma volume fraction, and APT asymmetry index were assessed. Independent quantitative parameters were investigated to predict recurrent glioma using multivariable logistic regression. The incremental value of APT signal to other parameters was assessed by the increase of the area under the curve, net reclassification index, and integrated discrimination improvement. RESULTS Univariable analysis showed that lower ADC (p = 0.018), higher FA (p = 0.031), higher nCBV (p = 0.021), and higher APT signal (p = 0.009) were associated with recurrent gliomas. In multivariable logistic regression, the diagnostic performance of the model with ADC, FA, and nCBV significantly increased when APT signal was added, with areas under the curve of 0.87 and 0.92, respectively (net reclassification index of 0.77 and integrated discrimination improvement of 0.13). CONCLUSION APT imaging may be a useful imaging biomarker that adds value to DTI, DCE, and DSC parameters for distinguishing between recurrent gliomas and treatment-induced changes.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jinyuan Zhou
- Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| |
Collapse
|
21
|
Canese R. Editorial for "Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adenocarcinoma". J Magn Reson Imaging 2020; 52:1497-1498. [PMID: 32557898 DOI: 10.1002/jmri.27265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rossella Canese
- MRI Unit - Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Li L, Chen W, Yan Z, Feng J, Hu S, Liu B, Liu X. Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adenocarcinoma. J Magn Reson Imaging 2020; 52:1487-1496. [PMID: 32524685 DOI: 10.1002/jmri.27212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The evaluation of prognostic factors in rectal carcinoma patients has important clinical significance. P53 status and the Ki-67 index have served as prognostic factors in rectal carcinoma. Amide proton transfer (APT) imaging has shown great potential in tumor diagnosis. However, few studies reported the value of APT imaging in evaluating p53 and Ki-67 status of rectal carcinoma. PURPOSE To investigate the feasibility of amide proton transfer MRI in assessing p53 and Ki-67 expression of rectal adenocarcinoma, and compare it with conventional diffusion-weighted imaging (DWI). STUDY TYPE Retrospective. POPULATION Forty-three patients with rectal adenocarcinoma (age: 34-85 years). FIELD STRENGTH/SEQUENCE 3T/APT imaging using a 3D turbo spin echo (TSE)-Dixon pulse sequence with chemical shift-selective fat suppression, 2D DWI, and 2D T2 -weighted TSE. ASSESSMENT Mean tumor APT signal intensity (SImean ) and apparent diffusion coefficient (ADCmean ) were measured. Traditional tumor pathological analysis included WHO grades, pT (pathologic tumor) stages, and pN (pathologic node) stages. Expression levels of p53 and Ki-67 were determined by immunohistochemical assay. STATISTICAL TESTS One-way analysis of variance (ANOVA); Student's t-test; Spearman's correlation coefficient; receiver operating characteristic (ROC) curve analysis. RESULTS High-grade tumors, more advanced stage tumors, and tumors with lymph node involvement had higher APT SImean values: high grade (n = 15) vs. low-grade (n = 28), P < 0.001; pT2 (n = 10) vs. pT3 (n = 20) vs. pT4 (N = 13), P = 0.021; pN0 (n = 24) vs. pN1-2 (n = 19), P = 0.019. ADCmean differences were found in tumors with different pT stage: pT2 (n = 10) vs. pT3 (n = 20) vs. pT4 (N = 13), P = 0.013, but not in tumors with different histologic grade: high grade (n = 15) vs. low-grade (n = 28), P = 0.3536; or pN stage: pN0 (n = 24) vs. pN1-2 (n = 19), P = 0.624. Tumor with p53 positive status had higher APT SImean than tumor with negative p53 status (2.363 ± 0.457 vs. 2.0150 ± 0.3552, P = 0.014). There was no difference in ADCmean with p53 status (1.058 ± 0.1163 10-3 mm2 /s vs. 1.055 ± 0.128 10-3 mm2 /s, P = 0.935). APT SImean and ADCmean were significantly different in tumors with low and high Ki-67 status (1.7882 ± 0.11386 vs. 2.3975 ± 0.41586, P < 0.001; 1.1741 ± 0.093 10-3 mm2 /s vs. 1.0157 ± 0.10459 10-3 mm2 /s, P < 0.001, respectively). APT SImean exhibited a positive correlation with p53 labeling index and Ki-67 labeling index (r = 0.3741, P = 0.0135; r = 0.7048; P < 0.001, respectively). ADCmean showed no correlation with p53 labeling index, but a negative correlation with Ki-67 labeling index (r = -0.5543, P < 0.0001). ROC curves demonstrated that APT SImean had significantly higher diagnostic ability for differentiation of high Ki-67 expression of rectal adenocarcinoma than ADCmean (81.2% vs. 78.12%, 90.91% vs. 63.64; P < 0.001 vs. P = 0.017), while no difference was found in predicting p53 status (92.86% vs. 71.4%, 53.33% vs. 66.7%; P < 0.001 vs. P = 0.0471). DATA CONCLUSION APT SImean was related to p53 and Ki-67 expression levels in rectal adenocarcinoma. APT imaging may serve as a noninvasive biomarker for assessing genetic prognostic factors of rectal adenocarcinoma. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Ling Li
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jieping Feng
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shaowei Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Bulakbaşı N, Paksoy Y. Correction to: Advanced imaging in adult diffusely infiltrating low-grade gliomas. Insights Imaging 2020; 11:57. [PMID: 32323033 PMCID: PMC7176752 DOI: 10.1186/s13244-020-00862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The original article [1] contains errors in Table 1 in rows ktrans and Ve; the correct version of Table 1 can be viewed in this Correction article.
Collapse
Affiliation(s)
- Nail Bulakbaşı
- Medical Faculty, University of Kyrenia, Sehit Yahya Bakır Street, Karakum, Mersin-10, Kyrenia, Turkish Republic of Northern Cyprus, Turkey.
| | | |
Collapse
|
24
|
Song Q, Zhang C, Chen X, Cheng Y. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas: a meta-analysis. Acta Radiol 2020; 61:549-557. [PMID: 31495179 DOI: 10.1177/0284185119871667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a subtype of chemical exchange saturation transfer imaging without contrast agent administration, amide proton transfer (APT) imaging has demonstrated the potential for differentiating the histologic grades of gliomas. Dynamic susceptibility contrast-enhanced perfusion, a perfusion-weighted imaging technique, is a well-established technique in grading gliomas. Purpose To compare the ability of amide proton transfer and dynamic susceptibility contrast-enhanced imaging for predicting the grades of gliomas. Material and Methods A comprehensive literature search was performed independently by two observers to identify articles about the diagnostic performance of amide proton transfer and dynamic susceptibility contrast-enhanced perfusion in predicting the grade of gliomas. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Results Of 179 studies identified, 23 studies were included the analysis. Eight studies evaluated amide proton transfer and 16 studies evaluated dynamic susceptibility contrast-enhanced perfusion with the parameter rCBV. The pooled sensitivities and specificities of each study’s best performing parameter were 88% (95% confidence interval [CI] 74–95) and 89% (95% CI 78–95) for amide proton transfer, and 95% (95% CI 87–98), 88% (95% CI 81–93) for perfusion-weighted imaging–dynamic susceptibility contrast-enhanced perfusion, respectively. The pooled sensitivities and specificities for grading gliomas using the two most commonly evaluated parameters, were 92% (95% CI 80–97) and 90% (95% CI 75–96) for APTmax, and 97% (95% CI 91–99) and 87% (95% CI 80–92) for rCBVmax, respectively. Conclusion Considering the similar performance of APT and dynamic susceptibility contrast-enhanced (DSC) in predicting glioma grade, the former method appears preferable since it needs no contrast agent.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Chencheng Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, PR China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
25
|
Okuchi S, Hammam A, Golay X, Kim M, Thust S. Endogenous Chemical Exchange Saturation Transfer MRI for the Diagnosis and Therapy Response Assessment of Brain Tumors: A Systematic Review. Radiol Imaging Cancer 2020; 2:e190036. [PMID: 33778693 PMCID: PMC7983695 DOI: 10.1148/rycan.2020190036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
Purpose To generate a narrative synthesis of published data on the use of endogenous chemical exchange saturation transfer (CEST) MRI in brain tumors. Materials and Methods A systematic database search (PubMed, Ovid Embase, Cochrane Library) was used to collate eligible studies. Two researchers independently screened publications according to predefined exclusion and inclusion criteria, followed by comprehensive data extraction. All included studies were subjected to a bias risk assessment using the Quality Assessment of Diagnostic Accuracy Studies tool. Results The electronic database search identified 430 studies, of which 36 fulfilled the inclusion criteria. The final selection of included studies was categorized into five groups as follows: grading gliomas, 19 studies (area under the receiver operating characteristic curve [AUC], 0.500-1.000); predicting molecular subtypes of gliomas, five studies (AUC, 0.610-0.920); distinction of different brain tumor types, seven studies (AUC, 0.707-0.905); therapy response assessment, three studies (AUC not given); and differentiating recurrence from treatment-related changes, five studies (AUC, 0.880-0.980). A high bias risk was observed in a substantial proportion of studies. Conclusion Endogenous CEST MRI offers valuable, potentially unique information in brain tumors, but its diagnostic accuracy remains incompletely known. Further research is required to assess the method's role in support of molecular genetic diagnosis, to investigate its use in the posttreatment phase, and to compare techniques with a view to standardization.Keywords: Brain/Brain Stem, MR-Imaging, Neuro-OncologySupplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Sachi Okuchi
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Ahmed Hammam
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Xavier Golay
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Mina Kim
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Stefanie Thust
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| |
Collapse
|
26
|
Bulakbaşı N, Paksoy Y. Advanced imaging in adult diffusely infiltrating low-grade gliomas. Insights Imaging 2019; 10:122. [PMID: 31853670 PMCID: PMC6920302 DOI: 10.1186/s13244-019-0793-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 02/09/2023] Open
Abstract
The adult diffusely infiltrating low-grade gliomas (LGGs) are typically IDH mutant and slow-growing gliomas having moderately increased cellularity generally without mitosis, necrosis, and microvascular proliferation. Supra-total resection of LGG significantly increases the overall survival by delaying malignant transformation compared with a simple debulking so accurate MR diagnosis is crucial for treatment planning. Data from meta-analysis support the addition of diffusion and perfusion-weighted MR imaging and MR spectroscopy in the diagnosis of suspected LGG. Typically, LGG has lower cellularity (ADCmin), angiogenesis (rCBVmax), capillary permeability (Ktrans), and mitotic activity (Cho/Cr ratio) compared to high-grade glioma. The identification of 2-hydroxyglutarate by MR spectroscopy can reflect the IDH status of the tumor. The initial low ADCmin, high rCBVmax, and Ktrans values are consistent with the poor prognosis. The gradual increase in intratumoral Cho/Cr ratio and rCBVmax values are well correlated with tumor progression. Besides MR-based technical artifacts, which are minimized by the voxel-based assessment of data obtained by histogram analysis, the problems derived from the diversity and the analysis of imaging data should be solved by using artificial intelligence techniques. The quantitative multiparametric MR imaging of LGG can either improve the diagnostic accuracy of their differential diagnosis or assess their prognosis.
Collapse
Affiliation(s)
- Nail Bulakbaşı
- Medical Faculty, University of Kyrenia, Sehit Yahya Bakır Street, Karakum, Mersin-10, Kyrenia, Turkish Republic of Northern Cyprus, Turkey.
| | | |
Collapse
|