1
|
Decroocq M, Frindel C, Rougé P, Ohta M, Lavoué G. Modeling and hexahedral meshing of cerebral arterial networks from centerlines. Med Image Anal 2023; 89:102912. [PMID: 37549612 DOI: 10.1016/j.media.2023.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly.
Collapse
Affiliation(s)
- Méghane Decroocq
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; LIRIS, CNRS UMR 5205, F-69621, France; ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Carole Frindel
- CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Pierre Rougé
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Université de Reims Champagne Ardenne, CReSTIC, 51100 Reims, France
| | - Makoto Ohta
- ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Guillaume Lavoué
- LIRIS, CNRS UMR 5205, F-69621, France; Ecole Centrale de Lyon, France
| |
Collapse
|
2
|
Fujimura S, Tanaka K, Takao H, Okudaira T, Koseki H, Hasebe A, Suzuki T, Uchiyama Y, Ishibashi T, Otani K, Karagiozov K, Fukudome K, Hayakawa M, Yamamoto M, Murayama Y. Computational fluid dynamic analysis of the initiation of cerebral aneurysms. J Neurosurg 2022; 137:335-343. [PMID: 34933277 DOI: 10.3171/2021.8.jns211452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Relationships between aneurysm initiation and hemodynamic factors remain unclear since de novo aneurysms are rarely observed. Most previous computational fluid dynamics (CFD) studies have used artificially reproduced vessel geometries before aneurysm initiation for analysis. In this study, the authors investigated the hemodynamic factors related to aneurysm initiation by using angiographic images in patients with cerebral aneurysms taken before and after an aneurysm formation. METHODS The authors identified 10 cases of de novo aneurysms in patients who underwent follow-up examinations for existing cerebral aneurysms located at a different vessel. The authors then reconstructed the vessel geometry from the images that were taken before aneurysm initiation. In addition, 34 arterial locations without aneurysms were selected as control cases. Hemodynamic parameters acting on the arterial walls were calculated by CFD analysis. RESULTS In all de novo cases, the aneurysmal initiation area corresponded to the highest wall shear stress divergence (WSSD point), which indicated that there was a strong tensile force on the arterial wall at the initiation area. The other previously reported parameters did not show such correlations. Additionally, the pressure loss coefficient (PLc) was statistically significantly higher in the de novo cases (p < 0.01). The blood flow impact on the bifurcation apex, or the secondary flow accompanied by vortices, resulted in high tensile forces and high total pressure loss acting on the vessel wall. CONCLUSIONS Aneurysm initiation may be more likely in an area where both tensile forces acting on the vessel wall and total pressure loss are large.
Collapse
Affiliation(s)
- Soichiro Fujimura
- 1Department of Mechanical Engineering, Tokyo University of Science
- Departments of2Innovation for Medical Information Technology and
| | - Kazutoshi Tanaka
- Departments of2Innovation for Medical Information Technology and
| | - Hiroyuki Takao
- Departments of2Innovation for Medical Information Technology and
- 3Neurosurgery, The Jikei University School of Medicine
- 4Graduate School of Mechanical Engineering, Tokyo University of Science
| | - Takuma Okudaira
- Departments of2Innovation for Medical Information Technology and
| | | | - Akiko Hasebe
- 6Department of Neurosurgery, Fujita Health University, Aichi, Japan
| | - Takashi Suzuki
- Departments of2Innovation for Medical Information Technology and
- 5Siemens Healthcare K. K., Tokyo; and
| | - Yuya Uchiyama
- Departments of2Innovation for Medical Information Technology and
- 4Graduate School of Mechanical Engineering, Tokyo University of Science
| | | | - Katharina Otani
- 3Neurosurgery, The Jikei University School of Medicine
- 5Siemens Healthcare K. K., Tokyo; and
| | | | - Koji Fukudome
- 1Department of Mechanical Engineering, Tokyo University of Science
| | | | - Makoto Yamamoto
- 1Department of Mechanical Engineering, Tokyo University of Science
| | | |
Collapse
|
3
|
Zhai X, Wang Y, Fang G, Hu P, Zhang H, Zhu C. Case Report: Dynamic Changes in Hemodynamics During the Formation and Progression of Intracranial Aneurysms. Front Cardiovasc Med 2022; 8:775536. [PMID: 35127854 PMCID: PMC8814101 DOI: 10.3389/fcvm.2021.775536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the devastating consequences of aneurysmal subarachnoid hemorrhage (SAH), the mechanisms underlying the formation, progression, and rupture of intracranial aneurysms (IAs) are complex and not yet fully clear. In a real-world situation, continuously observing the process of aneurysm development in humans appears unrealistic, which also present challenges for the understanding of the underlying mechanism. We reported the relatively complete course of IA development in two real patients. On this basis, computational fluid dynamics simulation (CFD) was performed to evaluate the changes in hemodynamics and analyze the mechanism underlying the formation, progression, and rupture of IAs. Our results suggested that the formation and progression of IAs can be a dynamic process, with constantly changing hemodynamic characteristics. CFD analysis based on medical imaging provides the opportunity to study the hemodynamic conditions over time. From these two rare cases, we found that concentrated high-velocity inflow jets, flows with vortex structures, extremely high WSS, and a very steep WSSG were correlated with the formation of IAs. Complex multi-vortex flows are possibly related to IAs prior to growth, and the rupture of IAs is possibly related to low WSS, extreme instability and complexity of flow patterns. Our findings provide unique insight into the theoretical hemodynamic mechanism underlying the formation and progression of IAs. Given the small sample size the findings of this study have to be considered preliminary and exploratory.
Collapse
|
4
|
Tsukada T, Izumi T, Isoda H, Nishihori M, Kropp AE, Mizuno T, Wakabayashi T. Comparison of hemodynamic stress in healthy vessels after parent artery occlusion and flow diverter stent treatment for internal carotid artery aneurysm. J Neurosurg 2021; 136:619-626. [PMID: 34416714 DOI: 10.3171/2021.2.jns204185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE De novo aneurysms generally develop in healthy vessels after parent artery occlusion for large internal carotid artery (ICA) aneurysm, possibly owing to increased hemodynamic stress in the remaining vessels. In recent years, there has been a shift toward flow diverter stent treatment. However, there is a lack of direct evidence and data that prove this change in hemodynamic stress in healthy vessels after parent artery occlusion and flow diverter stent treatment. The authors compared hemodynamic stress in healthy-side vessels before and after parent artery occlusion and flow diverter treatments. METHODS The authors included patients who underwent 3D cine phase-contrast MRI before and after large ICA aneurysm treatment. Spatially and temporally averaged volume flow rates and spatially averaged systolic wall shear stress (WSS) in healthy-side ICA distal to the posterior communicating artery (C1 segment according to Fisher's classification) were measured before and after parent artery occlusion and flow diverter treatments. RESULTS Seventeen patients were included (5 patients in the parent artery occlusion group and 12 in the flow diverter group). At 1-2 months after treatment, median volume flow rate in healthy-side ICA increased from 5.36 ml/sec to 6.28 ml/sec (total increase 117%, p = 0.04) in the parent artery occlusion group and from 4.65 ml/sec to 4.93 ml/sec (total increase 106%, p = 0.02) in the flow diverter group. In the parent artery occlusion group, median WSS in the C1 segment of the healthy-side ICA increased from 3.91 Pa to 5.61 Pa (total increase 143%, p = 0.08); however, no significant increase was observed in the flow diverter group (4.29 Pa to 4.57 Pa [total increase 107%, p = 0.21]). CONCLUSIONS Postoperatively, volume flow rate and WSS in the C1 segment of the healthy-side ICA significantly increased in the parent artery occlusion group. Therefore, the parent artery occlusion group was more prone to de novo aneurysm than the flow diverter group.
Collapse
Affiliation(s)
- Tetsuya Tsukada
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Izumi
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- 2Brain & Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiro Nishihori
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - A Elisabeth Kropp
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Mizuno
- 3Department of Medical Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Yoneyama Y, Isoda H, Ishiguro K, Terada M, Kamiya M, Otsubo K, Perera R, Mizuno T, Fukuyama A, Takiguchi K, Watanabe T, Kosugi T, Komori Y, Naganawa S. Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics. Phys Eng Sci Med 2020; 43:1327-1337. [PMID: 33044647 DOI: 10.1007/s13246-020-00936-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to conduct a flow experiment using a cerebrovascular phantom and investigate whether magnetic resonance angiography (MRA) could replace three-dimensional rotational angiography (RA) and computed tomography angiography (CTA) to construct vascular models for computational fluid dynamics (CFD). We performed MRA and 3D cine phase-contrast (PC) MR imaging with a silicone cerebrovascular phantom of an internal carotid artery-posterior communicating artery aneurysm with blood-mimicking fluid, and controlled flow with a flowmeter. We also obtained RA and CTA data for the phantom. Four analysts constructed vascular models based on the three different modalities. These 12 constructed models used flow information based on 3D cine PC MR imaging for CFD. We compared RA-, CTA-, MRA-based CFD results using the micro-CT-based CFD result as the criterion standard to investigate whether MRA-based CFD was not inferior to RA- or CTA-based CFD. We also analyzed the inter-analyst variability. Wall shear stress (WSS) distributions and streamlines of RA- or MRA-based CFD and those of micro-CT-based CFD were similar, but the vascular models and WSS values were different. Accuracy in measurements of blood vessel diameter, cross-sectional maximum velocity, and spatially averaged WSS was the highest for RA-based CFD, followed by MRA-based and CTA-based CFD using micro-CT-based CFD result as the reference. Except maximum velocity from CTA, all other parameters had good inter-analyst agreement using different modalities. The results demonstrated that non-invasive MRA can be used for cerebrovascular CFD models with good inter-analyst agreements.
Collapse
Affiliation(s)
- Yuya Yoneyama
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Department of Radiology, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Haruo Isoda
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan. .,Brain & Mind Research Center, Nagoya University, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan. .,Biomedical Imaging Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.
| | - Kenta Ishiguro
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Department of Radiological Technology, Kariya Toyota General Hospital, 5-15 Sumiyoshi-cho, Kariya, Aichi, 448-8505, Japan
| | - Masaki Terada
- Department of Diagnostic Radiological Technology, Iwata City Hospital, 512-3 Okubo, Iwata, Shizuoka, 438-8550, Japan
| | - Masaki Kamiya
- Department of Diagnostic Radiological Technology, Iwata City Hospital, 512-3 Okubo, Iwata, Shizuoka, 438-8550, Japan.,Department of Radiology, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kenichi Otsubo
- Department of Diagnostic Radiological Technology, Iwata City Hospital, 512-3 Okubo, Iwata, Shizuoka, 438-8550, Japan
| | - Roshani Perera
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan
| | - Takashi Mizuno
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Fukuyama
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Department of Radiological Sciences, Faculty of Health Sciences, Japan Health Care College, 434-1 Shinei, Kiyota-ku, Sapporo, Hokkaido, 004-0839, Japan
| | - Kazuya Takiguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Department of Radiological Technology, Kitakyushu Municipal Medical Center, 1-1, Bashaku 2-chome, Kokurakita-ku, Kitakyushu, Fukuoka, 802-0077, Japan
| | - Tomoya Watanabe
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-20, Daikominami 1-chome, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.,Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takafumi Kosugi
- Renaissance of Technology Corporation, 1-2 Nakazawacho Nakaku, Hamamatsu, Shizuoka, 430-0904, Japan
| | - Yoshiaki Komori
- Siemens Healthcare K.K, Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-ku, Tokyo, 141-8644, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
6
|
Abstract
4D Flow is an emerging MR technique enabling three-dimensional and cardiac phase-resolved flowmetry with ECG-gated phase-contrast MRI that increased the speed of data acquisitions, accuracy and robustness. The method is promoting researches in areas that have not been fully addressed before in the cardiovascular system, such as flowmetry of the bloodstream across the valves, within the heart chambers, complexed flow dynamics such as vortex, helical or retrograde. Wall shear stress and other potential biomarkers derived from 4D Flow are known to be related to vascular wall diseases such as atherosclerosis. In this review, fundamental concepts of 4D Flow technique and post-processing, benefits and limitations as well as its clinical applications are discussed, and the importance of quality control and validation of the method is emphasized. New ideas inspired by 4D Flow can help clinicians and MR scientists further understand the role of flow dynamics in health sciences, diseases and various aspects of cardiovascular physiology.
Collapse
Affiliation(s)
- Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
7
|
Hemodynamic Changes in the Carotid Artery after Infusion of Normal Saline Using Computational Fluid Dynamics. Diagnostics (Basel) 2020; 10:diagnostics10070473. [PMID: 32664658 PMCID: PMC7400695 DOI: 10.3390/diagnostics10070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: To study the effect of the infusion of normal saline on hemodynamic changes in healthy volunteers using computational fluid dynamics (CFD) simulation. Methods: Eight healthy subjects participated and 16 carotid arteries were used for the CFD analysis. A one-liter intravenous infusion of normal saline was applied to the participants to observe the hemodynamic variations. Blood viscosity was measured before and after the injection of normal saline to apply the blood properties on the CFD modeling. Blood viscosity, shear rate, and wall shear stress were visually and quantitatively shown for the comparison between before and after the infusion of normal saline. Statistical analyses were performed to confirm the difference between the before and after groups. Results: After the infusion of normal saline, decreased blood viscosity was observed in the whole carotid artery. At the internal carotid artery, the recirculation zone with low intensity was found after the injection of normal saline. Increased shear rate and reduced wall shear stress was observed at the carotid bifurcation and internal carotid artery. The hemodynamic differences between before and after groups were statistically significant. Conclusions: The infusion of normal saline affected not only the overall changes of blood flow in the carotid artery but also the decrease of blood viscosity.
Collapse
|
8
|
Imai T, Izumi T, Isoda H, Ishiguro K, Mizuno T, Tsukada T, Kropp A, Ito M, Nishihori M, Ishida M, Tamari Y, Wakabayashi T. Factors influencing blood flow resistance from a large internal carotid artery aneurysm revealed by a computational fluid dynamics model. NAGOYA JOURNAL OF MEDICAL SCIENCE 2019; 81:629-636. [PMID: 31849380 PMCID: PMC6892662 DOI: 10.18999/nagjms.81.4.629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Hyperperfusion syndrome occurs after treatment of a large or giant cerebral aneurysm. Recently, flow-diverter stent placement has emerged as an effective treatment method for a large cerebral aneurysm, but postoperative ipsilateral delayed intraparenchymal hemorrhage occurs in a minority of cases. The mechanism underlying delayed intraparenchymal hemorrhage is not established, but one possibility is hyperperfusion syndrome. The incidence of delayed intraparenchymal hemorrhage appears to be higher for giant aneurysms; hence, we speculated that large/giant aneurysms may create flow resistance, and mitigation by flow-diverter stent deployment leads to hyperperfusion syndrome and delayed intraparenchymal hemorrhage. The purpose of this study was to identify aneurysm characteristics promoting flow resistance by the analysis of pressure loss in an internal carotid artery paraclinoid aneurysm model using computational fluid dynamics. A virtual U-shaped model of the internal carotid artery siphon portion was created with a spherical aneurysm of various angles, body diameters, and neck diameters. Visualization of streamlines, were calculated of pressure loss between proximal and distal sides of the aneurysm, and vorticity within the aneurysm were calculated. The pressure loss and vorticity demonstrated similar changes according to angle, peaking at 60°. In contrast, aneurysm diameter had little influence on pressure loss. Larger neck width, however, increases pressure loss. Our model predicts that aneurysm location and neck diameter can increase the flow resistance from a large internal carotid artery aneurysm. Patients with large aneurysm angles and neck diameters may be at increased risk of hyperperfusion syndrome and ensuing delayed intraparenchymal hemorrhage following flow-diverter stent treatment.
Collapse
Affiliation(s)
- Tasuku Imai
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Izumi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Ishiguro
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mizuno
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Tsukada
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asuka Kropp
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nishihori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Ishida
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Tamari
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Schönfeld MH, Forkert ND, Fiehler J, Cho YD, Han MH, Kang HS, Peach TW, Byrne JV. Hemodynamic Differences Between Recurrent and Nonrecurrent Intracranial Aneurysms: Fluid Dynamics Simulations Based on MR Angiography. J Neuroimaging 2019; 29:447-453. [PMID: 30891876 DOI: 10.1111/jon.12612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the role of wall shear stress (WSS) in the initiation, growth, and rupture of intracranial aneurysms has been well studied, its influence on aneurysm recurrence after endovascular treatment requires further investigation. We aimed to compare WSS at necks of recurrent and nonrecurrent aneurysms. METHODS Nine recurrent coil-embolized aneurysms were identified and matched with nine nonrecurrent aneurysms. Patient-specific vessel geometries reconstructed from follow-up 3-D time-of-flight magnetic resonance angiography were analyzed using computational fluid dynamics (CFD) simulations. Absolute WSS and the percentage of abnormally low and high WSS at the aneurysm neck compared to the near artery were measured. RESULTS The median percentage of abnormal WSS at the aneurysm neck was 49.3% for recurrent and 34.7% for nonrecurrent aneurysms (P = .011). The area under the receiver-operating-characteristic curve for distinguishing these aneurysms according to the percentage of abnormal WSS was .86 (95% CI .62 to .98). The optimal cut-off value of 45.1% resulted in a sensitivity and a specificity of 88.89% (95% CI 51.8% to 99.7%). CONCLUSION Our findings indicate that necks of recurrent aneurysms are exposed to abnormal WSS to a larger extent. Abnormal WSS may serve as a metric to distinguish them from nonrecurrent aneurysms with CFD simulations a priori.
Collapse
Affiliation(s)
- Michael Hinrich Schönfeld
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Daniel Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Young Dae Cho
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon Hee Han
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Thomas William Peach
- Department of Mechanical Engineering, University College London, London, UK.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - James Vincent Byrne
- Oxford Neurovascular & Neuroradiology Research Unit, Oxford Radcliffe Hospital, Oxford, UK
| |
Collapse
|