Ertl M, Boegle R. Investigating the vestibular system using modern imaging techniques-A review on the available stimulation and imaging methods.
J Neurosci Methods 2019;
326:108363. [PMID:
31351972 DOI:
10.1016/j.jneumeth.2019.108363]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
The vestibular organs, located in the inner ear, sense linear and rotational acceleration of the head and its position relative to the gravitational field of the earth. These signals are essential for many fundamental skills such as the coordination of eye and head movements in the three-dimensional space or the bipedal locomotion of humans. Furthermore, the vestibular signals have been shown to contribute to higher cognitive functions such as navigation. As the main aim of the vestibular system is the sensation of motion it is a challenging system to be studied in combination with modern imaging methods. Over the last years various different methods were used for stimulating the vestibular system. These methods range from artificial approaches like galvanic or caloric vestibular stimulation to passive full body accelerations using hexapod motion platforms, or rotatory chairs. In the first section of this review we provide an overview over all methods used in vestibular stimulation in combination with imaging methods (fMRI, PET, E/MEG, fNIRS). The advantages and disadvantages of every method are discussed, and we summarize typical settings and parameters used in previous studies. In the second section the role of the four imaging techniques are discussed in the context of vestibular research and their potential strengths and interactions with the presented stimulation methods are outlined.
Collapse