1
|
D'Arco F, Kandemirli SG, Dahmoush HM, Alves CAPF, Severino M, Dellepiane F, Robson CD, Lequin MH, Rossi-Espagnet C, O'Brien WT, Nash R, Clement E, Juliano AF. Incomplete partition type II in its various manifestations: isolated, in association with EVA, syndromic, and beyond; a multicentre international study. Neuroradiology 2024; 66:1397-1403. [PMID: 38833161 DOI: 10.1007/s00234-024-03386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Incomplete partition type II (IP-II) is characterized by specific histological features and radiological appearance. It may occur in isolation or in association with an enlarged vestibular aqueduct (EVA). Among those with IP-II and EVA, a subset has a diagnosis of Pendred syndrome. This study aimed to explore the prevalence of isolated IP-II, IP-II with EVA, and cases with a genetic or syndromic basis in our cohort. METHODS From a large, multicentre database of dysplastic cochleae (446 patients, 892 temporal bones), those with imaging features of IP-II were examined in detail, including whether there was a genetic or syndromic association. RESULTS A total of 78 patients with IP-II were identified. Among these, 55 patients had bilateral IP-II and EVA (only 12 with typical Mondini triad), 8 with bilateral IP-II and normal VA, 2 with bilateral IP-II and unilateral EVA, and 13 with unilateral IP-II (9 with unilateral EVA). Among the group with bilateral IP-II and bilateral EVA in whom genetic analysis was available, 14 out of 29 (48%) had SLC26A4 mutations and a diagnosis of Pendred syndrome, 1 had a FOXI1 mutation, and a few other genetic abnormalities; none had KCNJ10 pathogenic variants. CONCLUSION Bilateral IP-II-bilateral EVA may be seen in the context of Pendred syndrome (SLC26A4 or FOXI1 mutations) but, in the majority of our cohort, no genetic abnormalities were found, suggesting the possibility of unknown genetic associations. IP-II in isolation (without EVA) is favored to be genetic when bilateral, although the cause is often unknown.
Collapse
Affiliation(s)
- Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Sedat G Kandemirli
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Hisham M Dahmoush
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, USA
| | - Cesar A P F Alves
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | | | | | - Caroline D Robson
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Maarten H Lequin
- Department of Radiology, Texas Children's Hospital, North Campus, Austin, TX, USA
| | - Camilla Rossi-Espagnet
- Functional and Interventional Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS , Rome, Italy
| | - William T O'Brien
- Department of Radiology, Orlando Health - Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Robert Nash
- Department of Paediatric Otolaryngology, Great Ormond Street Hospital, London, UK
| | - Emma Clement
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Amy F Juliano
- Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St, 02114, Boston, MA, USA.
| |
Collapse
|
2
|
Abstract
Pattern recognition of specific temporal bone radiological phenotypes, in association with abnormalities in other organ systems, is critical in the diagnosis and management of syndromic causes of hearing loss. Several recent publications have demonstrated the presence of specific radiological appearances, allowing precise genetic and/or syndromic diagnosis, in the right clinical context. This review article aims to provide an extensive but practical guide to the radiologist dealing with syndromic causes of hearing loss.
Collapse
Affiliation(s)
- Martin Lewis
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK. felice.d'
| |
Collapse
|
3
|
Lewis MA, Juliano A, Robson C, Clement E, Nash R, Rajput K, D'Arco F. The spectrum of cochlear malformations in CHARGE syndrome and insights into the role of the CHD7 gene during embryogenesis of the inner ear. Neuroradiology 2023; 65:819-834. [PMID: 36715725 DOI: 10.1007/s00234-023-03118-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE We reviewed the genotypes and the imaging appearances of cochleae in CHARGE patients from two large tertiary centres and analysed the observed cochlear anomalies, providing detailed anatomical description and a grading system. The goal was to gain insight into the spectrum of cochlear anomalies in CHARGE syndrome, and thus, in the role of the CHD7 gene in otic vesicle development. METHODS We retrospectively reviewed CT and/or MR imaging of CHARGE patients referred to our institutions between 2005 and 2022. Cochlear morphology was analysed and, when abnormal, divided into 3 groups in order of progressive severity. Other radiological findings in the temporal bone were also recorded. Comparison with the existing classification system of cochlear malformation was also attempted. RESULTS Cochlear morphology in our CHARGE cohort ranged from normal to extreme hypoplasia. The most common phenotype was cochlear hypoplasia in which the basal turn was relatively preserved, and the upper turns were underdeveloped. All patients in the cohort had absent or markedly hypoplastic semicircular canals and small, misshapen vestibules. Aside from a stenotic cochlear aperture (fossette) being associated with a hypoplastic or absent cochlear nerve, there was no consistent relationship between cochlear nerve status (normal, hypoplasia, or aplasia) and cochlear morphology. CONCLUSION Cochlear morphology in CHARGE syndrome is variable. Whenever the cochlea was abnormal, it was almost invariably hypoplastic. This may shed light on the role of CHD7 in cochlear development. Accurate morphological description of the cochlea contributes to proper clinical diagnosis and is important for planning surgical treatment options.
Collapse
Affiliation(s)
- Martin A Lewis
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK
| | - Amy Juliano
- Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Caroline Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emma Clement
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Nash
- Department of Audiological Medicine, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Kaukab Rajput
- Department of Audiological Medicine, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK. felice.d'
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK. felice.d'
| |
Collapse
|
4
|
Bałdyga N, Oziębło D, Gan N, Furmanek M, Leja ML, Skarżyński H, Ołdak M. The Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes (Basel) 2023; 14:genes14020335. [PMID: 36833263 PMCID: PMC9957411 DOI: 10.3390/genes14020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The most frequently observed congenital inner ear malformation is enlarged vestibular aqueduct (EVA). It is often accompanied with incomplete partition type 2 (IP2) of the cochlea and a dilated vestibule, which together constitute Mondini malformation. Pathogenic SLC26A4 variants are considered the major cause of inner ear malformation but the genetics still needs clarification. The aim of this study was to identify the cause of EVA in patients with hearing loss (HL). Genomic DNA was isolated from HL patients with radiologically confirmed bilateral EVA (n = 23) and analyzed by next generation sequencing using a custom HL gene panel encompassing 237 HL-related genes or a clinical exome. The presence and segregation of selected variants and the CEVA haplotype (in the 5' region of SLC26A4) was verified by Sanger sequencing. Minigene assay was used to evaluate the impact of novel synonymous variant on splicing. Genetic testing identified the cause of EVA in 17/23 individuals (74%). Two pathogenic variants in the SLC26A4 gene were identified as the cause of EVA in 8 of them (35%), and a CEVA haplotype was regarded as the cause of EVA in 6 of 7 patients (86%) who carried only one SLC26A4 genetic variant. In two individuals with a phenotype matching branchio-oto-renal (BOR) spectrum disorder, cochlear hypoplasia resulted from EYA1 pathogenic variants. In one patient, a novel variant in CHD7 was detected. Our study shows that SLC26A4, together with the CEVA haplotype, accounts for more than half of EVA cases. Syndromic forms of HL should also be considered in patients with EVA. We conclude that to better understand inner ear development and the pathogenesis of its malformations, there is a need to look for pathogenic variants in noncoding regions of known HL genes or to link them with novel candidate HL genes.
Collapse
Affiliation(s)
- Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Nina Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Mariusz Furmanek
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Marcin L. Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-356-03-66
| |
Collapse
|
5
|
D'Arco F, Biswas A, Clement E, Rajput K, Juliano AF. Subtle Malformation of the Cochlear Apex and Genetic Abnormalities: Beyond the "Thorny" Cochlea. AJNR Am J Neuroradiol 2023; 44:79-81. [PMID: 36549853 PMCID: PMC9835904 DOI: 10.3174/ajnr.a7746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
With the routine use of high-resolution heavily T2-weighted sequences to evaluate patients with hearing deficits, new, subtle phenotypes of cochlear malformations are being discovered and an increasing number of genotype-phenotype correlations are being found through a reverse phenotype approach, which can help guide geneticists. In this brief report, we present subtle malformations of the apical turn of the cochlea related to 3 genetic mutations, emphasizing the importance of a careful assessment of the cochlear apex.
Collapse
Affiliation(s)
- F D'Arco
- From the Department of Radiology (F.D., A.B.)
| | - A Biswas
- From the Department of Radiology (F.D., A.B.)
| | | | - K Rajput
- Audiological Medicine (K.R.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - A F Juliano
- Department of Radiology (A.F.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Brotto D, Sorrentino F, Cenedese R, Avato I, Bovo R, Trevisi P, Manara R. Genetics of Inner Ear Malformations: A Review. Audiol Res 2021; 11:524-536. [PMID: 34698066 PMCID: PMC8544219 DOI: 10.3390/audiolres11040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Inner ear malformations are present in 20% of patients with sensorineural hearing loss. Although the first descriptions date to the 18th century, in recent years the knowledge about these conditions has experienced terrific improvement. Currently, most of these conditions have a rehabilitative option. Much less is known about the etiology of these anomalies. In particular, the evolution of genetics has provided new data about the possible relationship between inner ear malformations and genetic anomalies. In addition, in syndromic condition, the well-known presence of sensorineural hearing loss can now be attributed to the presence of an inner ear anomaly. In some cases, the presence of these abnormalities should be considered as a characteristic feature of the syndrome. The present paper aims to summarize the available knowledge about the possible relationships between inner ear malformations and genetic mutations.
Collapse
Affiliation(s)
- Davide Brotto
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
- Correspondence:
| | - Flavia Sorrentino
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Roberta Cenedese
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Irene Avato
- Department of Diagnostic, Paediatric, Clinical and Surgical Science, University of Pavia, 35128 Pavia, Italy;
| | - Roberto Bovo
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Patrizia Trevisi
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| |
Collapse
|
7
|
Imaging of inner ear malformations: a primer for radiologists. Radiol Med 2021; 126:1282-1295. [PMID: 34196909 PMCID: PMC8520521 DOI: 10.1007/s11547-021-01387-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
In the multidisciplinary management of patients with inner ear malformations (IEMs), the correct diagnosis makes the differences in terms of clinical and surgical treatment. The complex anatomical landscape of the inner ear, comprising several small structures, makes imaging of this region particularly challenging for general radiologists. Imaging techniques are important for identifying the presence and defining the type of IEM and the cochlear nerve condition. High-resolution magnetic resonance imaging (MRI) sequences and high-resolution computed tomography (HRCT) are the mainstay imaging techniques in this area. Dedicated MRI and HRCT protocols play an important role in the diagnosis and treatment of patients with inner ear disease. The most suitable technique should be selected depending on the clinical setting. However, in cases of congenital malformation of the inner ear, these techniques should be considered complementary. Since prompt intervention has a positive impact on the treatment outcomes, early diagnosis of IEMs is very important in the management of deaf patients. This article reviews the key concepts of IEMs for clinical radiologists by focusing on recent literature updates, discusses the principal imaging findings and clinical implications for every IEM subgroup, thus providing a practical diagnostic approach.
Collapse
|
8
|
Talenti G, Robson C, Severino MS, Alves CA, Chitayat D, Dahmoush H, Smith L, Muntoni F, Blaser SI, D'Arco F. Characteristic Cochlear Hypoplasia in Patients with Walker-Warburg Syndrome: A Radiologic Study of the Inner Ear in α-Dystroglycan-Related Muscular Disorders. AJNR Am J Neuroradiol 2021; 42:167-172. [PMID: 33122211 PMCID: PMC7814787 DOI: 10.3174/ajnr.a6858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama congenital muscular dystrophy are α-dystroglycan-related muscular disorders associated with brain malformations and eye abnormalities in which no structural inner ear abnormality has been described radiologically. We collected patients from 6 tertiary pediatric hospitals and reported the radiologic features and frequency of inner ear dysplasias. MATERIALS AND METHODS Patients previously diagnosed clinicoradiologically with Walker-Warburg syndrome, muscle-eye-brain disease, or Fukuyama congenital muscular dystrophy were included. We recorded the pathogenic variant, when available. Brain MR imaging and/or CT findings were reviewed in consensus, and inner ear anomalies were classified according to previous description in the literature. We then correlated the clinicoradiologic phenotype with the inner ear phenotype. RESULTS Thirteen patients fulfilled the criteria for the Walker-Warburg syndrome phenotype, 8 for muscle-eye-brain disease, and 3 for Fukuyama congenital muscular dystrophy. A dysplastic cochlea was demonstrated in 17/24. The most frequent finding was a pronounced cochlear hypoplasia type 4 with a very small anteriorly offset turn beyond the normal-appearing basal turn (12/13 patients with Walker-Warburg syndrome and 1/11 with muscle-eye-brain disease or Fukuyama congenital muscular dystophy). Two of 8 patients with muscle-eye-brain disease, 1/3 with Fukuyama congenital muscular dystrophy, and 1/13 with Walker-Warburg syndrome showed a less severe cochlear hypoplasia type 4. The remaining patients without Walker-Warburg syndrome were healthy. The vestibule and lateral semicircular canals of all patients were normal. Cranial nerve VIII was present in all patients with diagnostic MR imaging. CONCLUSIONS Most patients with the severe α-dystroglycanopathy Walker-Warburg syndrome phenotype have a highly characteristic cochlear hypoplasia type 4. Patients with the milder variants, muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, more frequently have a normal cochlea or milder forms of hypoplasia.
Collapse
Affiliation(s)
- G Talenti
- From the Department of Diagnostics and Pathology (G.T.), Neuroradiology Unit, Verona University Hospital, Verona, Italy
| | - C Robson
- Division of Neuroradiology (C.R.), Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - M S Severino
- Neuroradiology Unit (M.S.S.), Istituti di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genova, Italy
| | - C A Alves
- Departments of Radiology and Division of Neuroradiology (C.A.A.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - D Chitayat
- The Prenatal Diagnosis and Medical Genetics Program (D.C.), Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - H Dahmoush
- Department of Radiology (H.D.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| | - L Smith
- Dental and Maxillofacial Surgery Department (L.S.), Great Ormond Street Hospital, London, UK
| | - F Muntoni
- Dubowitz Neuromuscular Centre (F.M.), UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - S I Blaser
- Division of Neuroradiology (S.I.B.), Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - F D'Arco
- Neuroradiology Unit (F.D.), Department of Radiology, Great Ormond Street Hospital for Children, National Health Service Trust, London, UK felice.d'
| |
Collapse
|