1
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Huang YR, Fan HQ, Kuang YY, Wang P, Lu S. The Relationship Between the Molecular Phenotypes of Brain Gliomas and the Imaging Features and Sensitivity of Radiotherapy and Chemotherapy. Clin Oncol (R Coll Radiol) 2024; 36:541-551. [PMID: 38821723 DOI: 10.1016/j.clon.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common primary malignant tumors of the brain, accounting for about 80% of all central nervous system malignancies. With the development of molecular biology, the molecular phenotypes of gliomas have been shown to be closely related to the process of diagnosis and treatment. The molecular phenotype of glioma also plays an important role in guiding treatment plans and evaluating treatment effects and prognosis. However, due to the heterogeneity of the tumors and the trauma associated with the surgical removal of tumor tissue, the application of molecular phenotyping in glioma is limited. With the development of imaging technology, functional magnetic resonance imaging (MRI) can provide structural and function information about tumors in a noninvasive and radiation-free manner. MRI is very important for the diagnosis of intracranial lesions. In recent years, with the development of the technology for tumor molecular diagnosis and imaging, the use of molecular phenotype information and imaging procedures to evaluate the treatment outcome of tumors has become a hot topic. By reviewing the related literature on glioma treatment and molecular typing that has been published in the past 20 years, and referring to the latest 2020 NCCN treatment guidelines, summarizing the imaging characteristic and sensitivity of radiotherapy and chemotherapy of different molecular phenotypes of glioma. In this article, we briefly review the imaging characteristics of different molecular phenotypes in gliomas and their relationship with radiosensitivity and chemosensitivity of gliomas.
Collapse
Affiliation(s)
- Y-R Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - H-Q Fan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Y-Y Kuang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - P Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - S Lu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Habibi MA, Dinpazhouh A, Aliasgary A, Mirjani MS, Mousavinasab M, Ahmadi MR, Minaee P, Eazi S, Shafizadeh M, Gurses ME, Lu VM, Berke CN, Ivan ME, Komotar RJ, Shah AH. Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms. Neuroradiol J 2024:19714009241269526. [PMID: 39103206 DOI: 10.1177/19714009241269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging. METHOD This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17. RESULTS A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91). CONCLUSION The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Dinpazhouh
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Aliakbar Aliasgary
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mohammad Sina Mirjani
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mehdi Mousavinasab
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Reza Ahmadi
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Milad Shafizadeh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victor M Lu
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chandler N Berke
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Tang C, Chen L, Xu Y, Huang L, Zeng Z. Prediction of TERT mutation status in gliomas using conventional MRI radiogenomic features. Front Neurol 2024; 15:1439598. [PMID: 39131044 PMCID: PMC11310134 DOI: 10.3389/fneur.2024.1439598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Telomerase reverse transcriptase (TERT) promoter mutation status in gliomas is a key determinant of treatment strategy and prognosis. This study aimed to analyze the radiogenomic features and construct radiogenomic models utilizing medical imaging techniques to predict the TERT promoter mutation status in gliomas. Methods This was a retrospective study of 304 patients with gliomas. T1-weighted contrast-enhanced, apparent diffusion coefficient, and diffusion-weighted imaging MRI sequences were used for radiomic feature extraction. A total of 3,948 features were extracted from MRI images using the FAE software. These included 14 shape features, 18 histogram features, 24 gray level run length matrix, 14 gray level dependence matrix, 16 gray level run length matrix, 16 gray level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix, and 744 wavelet transforms. The dataset was randomly divided into training and testing sets in a ratio of 7:3. Three feature selection methods and six classification algorithms were used to model the selected features. Predictive performance was evaluated using receiver operating characteristic curve analysis. Results Among the evaluated classification algorithms, the combination model of recursive feature elimination (RFE) with linear regression (LR) using six features showed the best diagnostic performance (area under the curve: 0.733, 0.562, and 0.633 in the training, validation, and testing sets, respectively). The next best-performing models were naive Bayes, linear discriminant analysis, autoencoder, and support vector machine. Regarding the three feature selection algorithms, RFE showed the most consistent performance, followed by relief and ANOVA. T1-enhanced entropy and GLSZM derived from T1-enhanced images were identified as the most critical radiomics features for distinguishing TERT promoter mutation status. Conclusion The LR and LRLasso models, mainly based on T1-enhanced entropy and GLSZM, showed good predictive ability for TERT promoter mutations in gliomas using radiomics models.
Collapse
Affiliation(s)
| | | | | | | | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
6
|
Ren J, Yang G, Song Y, Zhang C, Yuan Y. Machine learning-based MRI radiomics for assessing the level of tumor infiltrating lymphocytes in oral tongue squamous cell carcinoma: a pilot study. BMC Med Imaging 2024; 24:33. [PMID: 38317076 PMCID: PMC10845803 DOI: 10.1186/s12880-024-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND To investigate the value of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics in assessing tumor-infiltrating lymphocyte (TIL) levels in patients with oral tongue squamous cell carcinoma (OTSCC). METHODS The study included 68 patients with pathologically diagnosed OTSCC (30 with high TILs and 38 with low TILs) who underwent pretreatment MRI. Based on the regions of interest encompassing the entire tumor, a total of 750 radiomics features were extracted from T2-weighted (T2WI) and contrast-enhanced T1-weighted (ceT1WI) imaging. To reduce dimensionality, reproducibility analysis by two radiologists and collinearity analysis were performed. The top six features were selected from each sequence alone, as well as their combination, using the minimum-redundancy maximum-relevance algorithm. Random forest, logistic regression, and support vector machine models were used to predict TIL levels in OTSCC, and 10-fold cross-validation was employed to assess the performance of the classifiers. RESULTS Based on the features selected from each sequence alone, the ceT1WI models outperformed the T2WI models, with a maximum area under the curve (AUC) of 0.820 versus 0.754. When combining the two sequences, the optimal features consisted of one T2WI and five ceT1WI features, all of which exhibited significant differences between patients with low and high TILs (all P < 0.05). The logistic regression model constructed using these features demonstrated the best predictive performance, with an AUC of 0.846 and an accuracy of 80.9%. CONCLUSIONS ML-based T2WI and ceT1WI radiomics can serve as valuable tools for determining the level of TILs in patients with OTSCC.
Collapse
Affiliation(s)
- Jiliang Ren
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China
| | - Gongxin Yang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, 200126, Shanghai, China
| | - Chunye Zhang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China.
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China.
| |
Collapse
|
7
|
Chen L, Chen R, Li T, Tang C, Li Y, Zeng Z. Multi-parameter MRI based radiomics nomogram for predicting telomerase reverse transcriptase promoter mutation and prognosis in glioblastoma. Front Neurol 2023; 14:1266658. [PMID: 37830090 PMCID: PMC10565857 DOI: 10.3389/fneur.2023.1266658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Objective To investigate the clinical utility of multi-parameter MRI-based radiomics nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis in adult glioblastoma (GBM). Methods We retrospectively analyzed MRI and pathological data of 152 GBM patients. A total of 2,832 radiomics features were extracted and filtered from preoperative MRI images. A radiomics nomogram was created on the basis of radiomics signature (rad-score) and clinical traits. The performance of the nomogram in TERT mutation identification was assessed using receiver operating characteristic (ROC) curve, calibration curves, and clinical decision curves. Pathologically confirmed TERT mutations and risk score-based TERT mutations were employed to assess patient prognosis, respectively. Results The random forest (RF) algorithm outperformed the other two algorithms, yielding the best diagnostic efficacy in differentiating TERT mutations, with area under the curve (AUC) values of 0.892 (95% CI: 0.828-0.956) and 0.824 (95% CI: 0.677-0.971) in the training set and validation sets, respectively. Furthermore, the predictive power of the radiomics nomogram constructed with the rad-score and clinical variables reached 0.916 (95%CI: 0.864, 0.968) in the training set and 0.880 (95%CI: 0.743, 1) in the validation set. Calibration curve and decision curve analysis findings further uphold the clinical application value of the radiomics nomogram. The overall survival of the high-risk subgroup was significantly shorter than that of the low-risk subgroup, which was consistent with the results of the pathologically confirmed TERT mutation group. Conclusion The radiomics nomogram could non-invasively provide promising insights for predicting TERT mutations and prognosis in GBM patients with excellent identification and calibration abilities.
Collapse
Affiliation(s)
- Ling Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Radiology, Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Runrong Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Li
- Department of Radiology, Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Chuyun Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yao Li
- Department of Neurosurgery, Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Akkurt BH, Spille DC, Peetz-Dienhart S, Kiolbassa NM, Mawrin C, Musigmann M, Heindel WL, Paulus W, Stummer W, Mannil M, Brokinkel B. Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas. Cancers (Basel) 2023; 15:4415. [PMID: 37686690 PMCID: PMC10486806 DOI: 10.3390/cancers15174415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE In meningiomas, TERT promotor mutations are rare but qualify the diagnosis of anaplasia, directly impacting adjuvant therapy. Effective screening for patients at risk for promotor mutations could enable more targeted molecular analyses and improve diagnosis and treatment. METHODS Semiautomatic segmentation of intracranial grade 2/3 meningiomas was performed on preoperative magnetic resonance imaging. Discriminatory power to predict TERT promoter mutations was analyzed using a random forest algorithm with an increasing number of radiomic features. Two final models with five and eight features with both fixed and differing radiomics features were developed and adjusted to eliminate random effects and to avoid overfitting. RESULTS A total of 117 image sets including training (N = 94) and test data (N = 23) were analyzed. To eliminate random effects and demonstrate the robustness of our approach, data partitioning and subsequent model development and testing were repeated a total of 100 times (each time with repartitioned training and independent test data). The established five- and eight-feature models with both fixed and different radiomics features enabled the prediction of TERT with similar but excellent performance. The five-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 91.8%/94.3%, mean accuracy of 85.5%/88.9%, mean sensitivity of 88.6%/91.4%, mean specificity of 83.2%/87.0%, and a mean Cohen's Kappa of 71.0%/77.7%. The eight-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 92.7%/94.6%, mean accuracy of 87.3%/88.9%, mean sensitivity of 89.6%/90.6%, mean specificity of 85.5%/87.5%, and a mean Cohen's Kappa of 74.4%/77.6%. Of note, the addition of further features of up to N = 8 only slightly increased the performance. CONCLUSIONS Radiomics-based machine learning enables prediction of TERT promotor mutation status in meningiomas with excellent discriminatory performance. Future analyses in larger cohorts should include grade 1 lesions as well as additional molecular alterations.
Collapse
Affiliation(s)
- Burak Han Akkurt
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
| | | | - Susanne Peetz-Dienhart
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| | - Nora Maren Kiolbassa
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Manfred Musigmann
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
| | | | - Werner Paulus
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
| | - Manoj Mannil
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
- Institute for Diagnostic and Interventional Radiology, Caritas-Hospital, DE-97980 Bad Mergentheim, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| |
Collapse
|
9
|
Nakasu S, Deguchi S, Nakasu Y. IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis. Brain Tumor Pathol 2023:10.1007/s10014-023-00463-8. [PMID: 37212969 DOI: 10.1007/s10014-023-00463-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center, Yabase-cho 1660, Kusatsu, Shiga, 525-8585, Japan.
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
10
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
11
|
Liu S, Zhang Y, Kong Z, Jiang C, Wang Y, Zhao D, You H, Ma W, Feng F. Feasibility of evaluating the histologic and genetic subtypes of WHO grade II-IV gliomas by diffusion-weighted imaging. BMC Neurosci 2022; 23:72. [PMID: 36471242 PMCID: PMC9720933 DOI: 10.1186/s12868-022-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND To explore the feasibility of diffusion-weighted imaging (DWI) metrics to predict the histologic subtypes and genetic status of gliomas (e.g., IDH, MGMT, and TERT) noninvasively. METHODS One hundred and eleven patients with pathologically confirmed WHO grade II-IV gliomas were recruited retrospectively. Apparent diffusion coefficient (ADC) values were measured in solid parts of gliomas on co-registered T2-weighted images and were compared with each other in terms of WHO grading and genotypes using t-tests. Receiver operating characteristic analysis was performed to assess the diagnostic performances of ADC. Subsequently, multiple linear regression was used to find independent variables, which can directly affect ADC values. RESULTS The values of overall mean ADC (omADC) and normalized ADC (nADC) of high grade gliomas and IDH wildtype gliomas were lower than low grade gliomas and IDH mutated gliomas (P < 0.05). nADC values showed better diagnostic performance than omADC in identifying tumor grade (AUC: 0.787 vs. 0.750) and IDH status (AUC: 0.836 vs. 0.777). ADC values had limited abilities in distinguishing TERT status (AUC = 0.607 for nADC and 0.617 for omADC) and MGMT status (AUC = 0.651 for nADC). Only tumor grade and IDH status were tightly associated with ADC values. CONCLUSION DWI metrics can predict glioma grading and IDH mutation noninvasively, but have limited use in detecting TERT mutation and MGMT methylation.
Collapse
Affiliation(s)
- Sirui Liu
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.8547.e0000 0001 0125 2443Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Zhang
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.411472.50000 0004 1764 1621Department of Radiology, Peking University First Hospital, No.8 Xishiku, Beijing, China
| | - Ziren Kong
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Chendan Jiang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Dachun Zhao
- grid.506261.60000 0001 0706 7839Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui You
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Feng Feng
- grid.506261.60000 0001 0706 7839Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
12
|
Piao S, Luo X, Bao Y, Hu B, Liu X, Zhu Y, Yang L, Geng D, Li Y. An MRI-based joint model of radiomics and spatial distribution differentiates autoimmune encephalitis from low-grade diffuse astrocytoma. Front Neurol 2022; 13:998279. [PMID: 36408523 PMCID: PMC9669344 DOI: 10.3389/fneur.2022.998279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The differential diagnosis between autoimmune encephalitis and low-grade diffuse astrocytoma remains challenging. We aim to develop a quantitative model integrating radiomics and spatial distribution features derived from MRI for discriminating these two conditions. METHODS In our study, we included 188 patients with confirmed autoimmune encephalitis (n = 81) and WHO grade II diffuse astrocytoma (n = 107). Patients with autoimmune encephalitis (AE, n = 59) and WHO grade II diffuse astrocytoma (AS, n = 79) were divided into training and test sets, using stratified sampling according to MRI scanners. We further included an independent validation set (22 patients with AE and 28 patients with AS). Hyperintensity fluid-attenuated inversion recovery (FLAIR) lesions were segmented for each subject. Ten radiomics and eight spatial distribution features were selected via the least absolute shrinkage and selection operator (LASSO), and joint models were constructed by logistic regression for disease classification. Model performance was measured in the test set using the area under the receiver operating characteristic (ROC) curve (AUC). The discrimination performance of the joint model was compared with neuroradiologists. RESULTS The joint model achieved better performance (AUC 0.957/0.908, accuracy 0.914/0.840 for test and independent validation sets, respectively) than the radiomics and spatial distribution models. The joint model achieved lower performance than a senior neuroradiologist (AUC 0.917/0.875) but higher performance than a junior neuroradiologist (AUC 0.692/0.745) in the test and independent validation sets. CONCLUSION The joint model of radiomics and spatial distribution from a single FLAIR could effectively classify AE and AS, providing clinical decision support for the differential diagnosis between the two conditions.
Collapse
Affiliation(s)
- Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xiao Luo
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wang H, Zhang S, Xing X, Yue Q, Feng W, Chen S, Zhang J, Xie D, Chen N, Liu Y. Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas. Cancer Med 2022; 12:2524-2537. [PMID: 36176070 PMCID: PMC9939206 DOI: 10.1002/cam4.5097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Gliomas with comutations of isocitrate dehydrogenase (IDH) genes and telomerase reverse transcriptase (TERT) gene promoter (IDHmut pTERTmut) show distinct biological features and respond to first-line treatment differently in comparison with other gliomas. This study aimed to characterize the IDHmut pTERTmut gliomas in multimodal MRI using the radiomic method and establish a precise diagnostic model identifying this group of gliomas. METHODS A total of 140 patients with untreated primary gliomas were admitted between 2016 and 2020 to West China Hospital as a discovery cohort, including 22 IDHmut pTERTmut patients. Thirty-four additional cases from a different hospital were included in the study as an independent validation cohort. A total of 3654 radiomic features were extracted from the preoperative multimodal MRI images (T1c, FLAIR, and ADC maps) and filtered in a data-driven approach. The discovery cohort was split into training and test sets by a 4:1 ratio. A diagnostic model (multilayer perceptron classifier) for detecting the IDHmut pTERTmut gliomas was trained using an automatic machine-learning algorithm named tree-based pipeline optimization tool (TPOT). The most critical radiomic features in the model were identified and visualized. RESULTS The model achieved an area under the receiver-operating curve (AUROC) of 0.971 (95% CI, 0.902-1.000), the sensitivity of 0.833 (95% CI, 0.333-1.000), and the specificity of 0.966 (95% CI, 0.931-1.000) in the test set. The area under the precision-recall curve (AUCPR) was 0.754 (95% CI, 0.572-0.833) and the F1 score was 0.833 (95% CI, 0.500-1.000). In the independent validation set, the model reached 0.952 AUROC, 0.714 sensitivity, 0.963 specificity, 0.841 AUCPR, and 0.769 F1 score. MR radiomic features of the IDHmut pTERTmut gliomas represented homogenous low-complexity texture in three modalities. CONCLUSIONS An accurate diagnostic model was constructed for detecting IDHmut pTERTmut gliomas using multimodal radiomic features. The most important features were associated with the homogenous simple texture of IDHmut pTERTmut gliomas in MRI images transformed using Laplacian of Gaussian and wavelet filters.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of NeurosurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuxin Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiang Xing
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qiang Yue
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Wentao Feng
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Siliang Chen
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Ni Chen
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yanhui Liu
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
15
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
16
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
17
|
A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas. Clin Radiol 2022; 77:e560-e567. [PMID: 35595562 DOI: 10.1016/j.crad.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
AIM To explore the predictive value of the radiomics feature-based nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis of lower-grade gliomas (LGGs) non-invasively. MATERIALS AND METHODS One hundred and seventy-six LGG patients (123 in the training cohort and 53 in the validation cohort) were enrolled retrospectively. A total of 851 radiomics features were extracted from contrast-enhanced magnetic resonance imaging (MRI) images. The radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) method and a rad-score was calculated. Multivariate logistic regression analysis was used to build a radiomics signature based on rad-score, participant's age, and gender, and a radiomics nomogram was used to represent this signature. The performance of the signature was evaluated by receiver operating characteristic (ROC) curve analysis, and the patient prognosis was stratified based on the TERT promoter mutation status and the radiomics signature. RESULTS Seven robust radiomics features were selected by LASSO and the radiomics signature showed good performance for predicting the TERT promoter mutation status, with an area under the curve (AUC) of 0.900 (0.832-0.946) and 0.873 (0.753-0.948) in the training and validation datasets. With a median overall survival time of 28.5 months, the radiomics signature stratified the LGG patients into two risk groups with significantly different prognosis (log-rank = 47.531, p<0.001). CONCLUSION The radiomics feature-based nomogram is a promising approach for predicting the TERT promoter mutation status preoperatively and evaluating the prognosis of lower-grade glioma patients non-invasively.
Collapse
|
18
|
Qing Z, Xiaoai K, Caiqiang X, Shenglin L, Xiaoyu H, Bin Z, Junlin Z. Nomogram for predicting early recurrence in patients with high-grade gliomas. World Neurosurg 2022; 164:e619-e628. [PMID: 35589036 DOI: 10.1016/j.wneu.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To develop a nomogram to predict early recurrence of high-grade glioma (HGG) based on clinical pathology, genetic factors and MRI parameters. METHODS 154 patients with HGG were classified into recurrence and non-recurrence groups based on the pathological diagnosis and RANO criteria. Clinical pathology information included age, sex, preoperative Karnofsky performance status (KPS) scores,grade, and cell proliferation index (Ki-67). Gene information included P53, IDH1, MGMT, and TERT expression status. All patients underwent baseline MRIs before treatment, including T1WI, T2WI, T1C, Flair, and DWI examinations. Tumor location, single/multiple tumors, tumor diameter, peritumoral edema, necrotic cyst, hemorrhage, average apparent diffusion coefficient(ADC) value, and minimum ADC values were evaluated. Univariate and multivariate logistic regression analyses were used to determine the predictors of early recurrence and build nomogram. RESULTS Univariate analysis showed that the number of tumors (OR, 0.258; 95% CI: 0.104, 0.639; P = 0.003) and peritumoral edema (OR, 0.965; 95% CI 0.942, 0.988; P = 0.003; mean in the recurrence group 22.04±17.21 mm; mean in the non-recurrence group 14.22±12.84 mm) were statistically significantly different in patients with early recurrence. Genetic factors associated with early recurrence included IDH1 (OR, 4.405; 95% CI 1.874, 10.353; P= 0.001), and MGMT (OR, 2.389; 95% CI 1.234, 4.628; P= 0.010). Multivariate logistic regression analysis revealed that the number of tumors (OR, 0.227; 95% CI 0.084, 0.616; P = 0.004), peritumoral edema (OR, 0.969; 95% CI 0.945, 0.993; P = 0.013), and IDH1 (OR, 4.200; 95% CI 1.602, 10.013; P= 0.004) were independent risk factors for early recurrence. The nomogram showed the highest net benefit when the threshold probability was less than 60%. CONCLUSION A nomogram prediction model can effectively aid in clinical treatment decisions for patients with newly diagnosed HGG .
Collapse
Affiliation(s)
- Zhou Qing
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Ke Xiaoai
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Xue Caiqiang
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Li Shenglin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Huang Xiaoyu
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhang Bin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhou Junlin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China.
| |
Collapse
|
19
|
Hasanau T, Pisarev E, Kisil O, Nonoguchi N, Le Calvez-Kelm F, Zvereva M. Detection of TERT Promoter Mutations as a Prognostic Biomarker in Gliomas: Methodology, Prospects, and Advances. Biomedicines 2022; 10:728. [PMID: 35327529 PMCID: PMC8945783 DOI: 10.3390/biomedicines10030728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
This article reviews the existing approaches to determining the TERT promoter mutational status in patients with various tumoral diseases of the central nervous system. The operational characteristics of the most common methods and their transferability in medical practice for the selection or monitoring of personalized treatments based on the TERT status and other related molecular biomarkers in patients with the most common tumors, such as glioblastoma, oligodendroglioma, and astrocytoma, are compared. The inclusion of new molecular markers in the course of CNS clinical management requires their rapid and reliable assessment. Availability of molecular evaluation of gliomas facilitates timely decisions regarding patient follow-up with the selection of the most appropriate treatment protocols. Significant progress in the inclusion of molecular biomarkers for their subsequent clinical application has been made since 2016 when the WHO CNS classification first used molecular markers to classify gliomas. In this review, we consider the methodological approaches used to determine mutations in the promoter region of the TERT gene in tumors of the central nervous system. In addition to classical molecular genetical methods, other methods for determining TERT mutations based on mass spectrometry, magnetic resonance imaging, next-generation sequencing, and nanopore sequencing are reviewed with an assessment of advantages and disadvantages. Beyond that, noninvasive diagnostic methods based on the determination of the mutational status of the TERT promoter are discussed.
Collapse
Affiliation(s)
- Tsimur Hasanau
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Eduard Pisarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Kisil
- Gause Institute of New Antibiotics, 119021 Moscow, Russia;
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Florence Le Calvez-Kelm
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Li Z, Kaiser L, Holzgreve A, Ruf VC, Suchorska B, Wenter V, Quach S, Herms J, Bartenstein P, Tonn JC, Unterrainer M, Albert NL. Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic [ 18F]FET PET radiomics. Eur J Nucl Med Mol Imaging 2021; 48:4415-4425. [PMID: 34490493 PMCID: PMC8566644 DOI: 10.1007/s00259-021-05526-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
Purpose To evaluate radiomic features extracted from standard static images (20–40 min p.i.), early summation images (5–15 min p.i.), and dynamic [18F]FET PET images for the prediction of TERTp-mutation status in patients with IDH-wildtype high-grade glioma. Methods A total of 159 patients (median age 60.2 years, range 19–82 years) with newly diagnosed IDH-wildtype diffuse astrocytic glioma (WHO grade III or IV) and dynamic [18F]FET PET prior to surgical intervention were enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and texture radiomic features were extracted from standard static (20–40 min summation images; TBR20–40), early static (5–15 min summation images; TBR5–15), and dynamic (time-to-peak; TTP) images, respectively. Recursive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after normalization, and logistic regression models were generated using the radiomic features extracted from each image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the training and testing cohort. Results The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an AUC of 0.82 (95% confidence interval 0.71–0.92) and sensitivity of 92.1% in the independent testing cohort. Weak predictive capability was obtained in the TBR5–15 model, with an AUC of 0.61 (95% CI 0.42–0.80) in the testing cohort, while no predictive power was observed in the TBR20–40 model. Conclusions Radiomics based on TTP images extracted from dynamic [18F]FET PET can predict the TERTp-mutation status of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05526-6.
Collapse
Affiliation(s)
- Zhicong Li
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
22
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
van Kempen EJ, Post M, Mannil M, Kusters B, ter Laan M, Meijer FJA, Henssen DJHA. Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13112606. [PMID: 34073309 PMCID: PMC8198025 DOI: 10.3390/cancers13112606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioma prognosis and treatment are based on histopathological characteristics and molecular profile. Following the World Health Organization (WHO) guidelines (2016), the most important molecular diagnostic markers include IDH1/2-genotype and 1p/19q codeletion status, although more recent publications also include ARTX genotype and TERT- and MGMT promoter methylation. Machine learning algorithms (MLAs), however, were described to successfully determine these molecular characteristics non-invasively by using magnetic resonance imaging (MRI) data. The aim of this review and meta-analysis was to define the diagnostic accuracy of MLAs with regard to these different molecular markers. We found high accuracies of MLAs to predict each individual molecular marker, with IDH1/2-genotype being the most investigated and the most accurate. Radiogenomics could therefore be a promising tool for discriminating genetically determined gliomas in a non-invasive fashion. Although encouraging results are presented here, large-scale, prospective trials with external validation groups are warranted. Abstract Treatment planning and prognosis in glioma treatment are based on the classification into low- and high-grade oligodendroglioma or astrocytoma, which is mainly based on molecular characteristics (IDH1/2- and 1p/19q codeletion status). It would be of great value if this classification could be made reliably before surgery, without biopsy. Machine learning algorithms (MLAs) could play a role in achieving this by enabling glioma characterization on magnetic resonance imaging (MRI) data without invasive tissue sampling. The aim of this study is to provide a performance evaluation and meta-analysis of various MLAs for glioma characterization. Systematic literature search and meta-analysis were performed on the aggregated data, after which subgroup analyses for several target conditions were conducted. This study is registered with PROSPERO, CRD42020191033. We identified 724 studies; 60 and 17 studies were eligible to be included in the systematic review and meta-analysis, respectively. Meta-analysis showed excellent accuracy for all subgroups, with the classification of 1p/19q codeletion status scoring significantly poorer than other subgroups (AUC: 0.748, p = 0.132). There was considerable heterogeneity among some of the included studies. Although promising results were found with regard to the ability of MLA-tools to be used for the non-invasive classification of gliomas, large-scale, prospective trials with external validation are warranted in the future.
Collapse
Affiliation(s)
- Evi J. van Kempen
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Max Post
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Manoj Mannil
- Clinic of Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany;
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands;
| | - Mark ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands;
| | - Frederick J. A. Meijer
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Dylan J. H. A. Henssen
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
- Correspondence:
| |
Collapse
|
24
|
Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Di Ieva A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021; 89:31-44. [PMID: 33826716 DOI: 10.1093/neuros/nyab103] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/24/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations. OBJECTIVE To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI). METHODS A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression. RESULTS Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets. CONCLUSION ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
Collapse
Affiliation(s)
- Anne Jian
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Kevin Jang
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Discipline of Surgery, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maurizio Manuguerra
- Department of Mathematics and Statistics, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Centre for Health Informatics, Macquarie University, Sydney, Australia
| | - John Magnussen
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Medical Imaging, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Macquarie Neurosurgery, Macquarie University, Sydney, Australia
| |
Collapse
|
25
|
Le NQK, Hung TNK, Do DT, Lam LHT, Dang LH, Huynh TT. Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med 2021; 132:104320. [PMID: 33735760 DOI: 10.1016/j.compbiomed.2021.104320] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the field of glioma, transcriptome subtypes have been considered as an important diagnostic and prognostic biomarker that may help improve the treatment efficacy. However, existing identification methods of transcriptome subtypes are limited due to the relatively long detection period, the unattainability of tumor specimens via biopsy or surgery, and the fleeting nature of intralesional heterogeneity. In search of a superior model over previous ones, this study evaluated the efficiency of eXtreme Gradient Boosting (XGBoost)-based radiomics model to classify transcriptome subtypes in glioblastoma patients. METHODS This retrospective study retrieved patients from TCGA-GBM and IvyGAP cohorts with pathologically diagnosed glioblastoma, and separated them into different transcriptome subtypes groups. GBM patients were then segmented into three different regions of MRI: enhancement of the tumor core (ET), non-enhancing portion of the tumor core (NET), and peritumoral edema (ED). We subsequently used handcrafted radiomics features (n = 704) from multimodality MRI and two-level feature selection techniques (Spearman correlation and F-score tests) in order to find the features that could be relevant. RESULTS After the feature selection approach, we identified 13 radiomics features that were the most meaningful ones that can be used to reach the optimal results. With these features, our XGBoost model reached the predictive accuracies of 70.9%, 73.3%, 88.4%, and 88.4% for classical, mesenchymal, neural, and proneural subtypes, respectively. Our model performance has been improved in comparison with the other models as well as previous works on the same dataset. CONCLUSION The use of XGBoost and two-level feature selection analysis (Spearman correlation and F-score) could be expected as a potential combination for classifying transcriptome subtypes with high performance and might raise public attention for further research on radiomics-based GBM models.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Orthopedic and Trauma Department, Cho Ray Hospital, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 106, Taiwan
| | - Luu Ho Thanh Lam
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Children's Hospital 2, Ho Chi Minh City, 70000, Viet Nam
| | - Luong Huu Dang
- Department of Otolaryngology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Tuan-Tu Huynh
- Department of Electrical Engineering, Yuan Ze University, No. 135, Yuandong Road, Zhongli, 320, Taoyuan, Taiwan; Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, No. 10, Huynh Van Nghe Road, Bien Hoa, Dong Nai, 76120, Viet Nam
| |
Collapse
|
26
|
Fang S, Fan Z, Sun Z, Li Y, Liu X, Liang Y, Liu Y, Zhou C, Zhu Q, Zhang H, Li T, Li S, Jiang T, Wang Y, Wang L. Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach. Front Oncol 2021; 10:606741. [PMID: 33643908 PMCID: PMC7905226 DOI: 10.3389/fonc.2020.606741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is important since preoperative diagnosis of pTERT status helps with evaluating prognosis and determining the surgical strategy. Here, we aimed to establish a radiomics-based machine-learning algorithm and evaluated its performance with regard to the prediction of mutations in pTERT in patients with World Health Organization (WHO) grade II gliomas. In total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance imaging scans. Elastic net (used for feature selection) and support vector machine with linear kernel were applied in nested 10-fold cross-validation loops. The predictive model was evaluated by receiver operating characteristic and precision-recall analyses. We performed an unpaired t-test to compare the posterior predictive probabilities among patients with differing pTERT statuses. We selected 12 valuable radiomics features using nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95% confidence interval [CI], 0.7735–0.9065) with an optimal summed value of sensitivity of 0.9355 (95% CI, 0.8802–0.9788) and specificity of 0.6197 (95% CI, 0.5071–0.7371). The overall accuracy was 0.7988 (95% CI, 0.7378–0.8598). The F1-score was 0.8406 (95% CI, 0.7684–0.902) with an optimal precision of 0.7632 (95% CI, 0.6818–0.8364) and recall of 0.9355 (95% CI, 0.8802–0.9788). Posterior probabilities of pTERT mutations were significantly different between patients with wild-type and mutant TERT promoters. Our findings suggest that a radiomics analysis with a machine-learning algorithm can be useful for predicting pTERT status in patients with WHO grade II glioma and may aid in glioma management.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ziwen Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchao Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianshi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Park CJ, Han K, Kim H, Ahn SS, Choi D, Park YW, Chang JH, Kim SH, Cha S, Lee SK. MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas. AJNR Am J Neuroradiol 2021; 42:448-456. [PMID: 33509914 DOI: 10.3174/ajnr.a6983] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Isocitrate dehydrogenase (IDH) wild-type lower-grade gliomas (histologic grades II and III) with epidermal growth factor receptor (EGFR) amplification or telomerase reverse transcriptase (TERT) promoter mutation are reported to behave similar to glioblastoma. We aimed to evaluate whether MR imaging features could identify a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma. MATERIALS AND METHODS In this multi-institutional retrospective study, pathologically confirmed IDH wild-type lower-grade gliomas from 2 tertiary institutions and The Cancer Genome Atlas constituted the training set (institution 1 and The Cancer Genome Atlas, 64 patients) and the independent test set (institution 2, 57 patients). Preoperative MRIs were analyzed using the Visually AcceSAble Rembrandt Images and radiomics. The molecular glioblastoma status was determined on the basis of the presence of EGFR amplification and TERT promoter mutation. Molecular glioblastoma was present in 73.4% and 56.1% in the training and test sets, respectively. Models using clinical, Visually AcceSAble Rembrandt Images, and radiomic features were built to predict the molecular glioblastoma status in the training set; then they were validated in the test set. RESULTS In the test set, a model using both Visually AcceSAble Rembrandt Images and radiomic features showed superior predictive performance (area under the curve = 0.854) than that with only clinical features or Visually AcceSAble Rembrandt Images (areas under the curve = 0.514 and 0.648, respectively; P < . 001, both). When both Visually AcceSAble Rembrandt Images and radiomics were added to clinical features, the predictive performance significantly increased (areas under the curve = 0.514 versus 0.863, P < .001). CONCLUSIONS MR imaging features integrated with machine learning classifiers may predict a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma.
Collapse
Affiliation(s)
- C J Park
- From the Department of Radiology (C.J.P.), Yonsei University College of Medicine, Seoul, Korea
| | - K Han
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - H Kim
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - S S Ahn
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - D Choi
- Department of Computer Science (D.C.), Yonsei University, Seoul, Korea
| | - Y W Park
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | | | - S H Kim
- Department of Pathology (S.H.K.), Yonsei University College of Medicine, Seoul, Korea
| | - S Cha
- Department of Radiology and Biomedical Imaging (S.C.), University of California San Francisco, San Francisco, California
| | - S-K Lee
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| |
Collapse
|