1
|
Pasquini L, Napolitano A, Pignatelli M, Tagliente E, Parrillo C, Nasta F, Romano A, Bozzao A, Di Napoli A. Synthetic Post-Contrast Imaging through Artificial Intelligence: Clinical Applications of Virtual and Augmented Contrast Media. Pharmaceutics 2022; 14:pharmaceutics14112378. [PMID: 36365197 PMCID: PMC9695136 DOI: 10.3390/pharmaceutics14112378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast media are widely diffused in biomedical imaging, due to their relevance in the diagnosis of numerous disorders. However, the risk of adverse reactions, the concern of potential damage to sensitive organs, and the recently described brain deposition of gadolinium salts, limit the use of contrast media in clinical practice. In recent years, the application of artificial intelligence (AI) techniques to biomedical imaging has led to the development of 'virtual' and 'augmented' contrasts. The idea behind these applications is to generate synthetic post-contrast images through AI computational modeling starting from the information available on other images acquired during the same scan. In these AI models, non-contrast images (virtual contrast) or low-dose post-contrast images (augmented contrast) are used as input data to generate synthetic post-contrast images, which are often undistinguishable from the native ones. In this review, we discuss the most recent advances of AI applications to biomedical imaging relative to synthetic contrast media.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Unit, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
- Correspondence:
| | - Matteo Pignatelli
- Radiology Department, Castelli Hospital, Via Nettunense Km 11.5, 00040 Ariccia, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Chiara Parrillo
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Francesco Nasta
- Medical Physics Department, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Via di Grottarossa 1035, 00189 Rome, Italy
- Neuroimaging Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
2
|
Lopriore P, Ricciarini V, Siciliano G, Mancuso M, Montano V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol Int 2022; 14:337-356. [PMID: 35466209 PMCID: PMC9036286 DOI: 10.3390/neurolint14020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Ataxia is increasingly being recognized as a cardinal manifestation in primary mitochondrial diseases (PMDs) in both paediatric and adult patients. It can be caused by disruption of cerebellar nuclei or fibres, its connection with the brainstem, or spinal and peripheral lesions leading to proprioceptive loss. Despite mitochondrial ataxias having no specific defining features, they should be included in hereditary ataxias differential diagnosis, given the high prevalence of PMDs. This review focuses on the clinical and neuropathological features and genetic background of PMDs in which ataxia is a prominent manifestation.
Collapse
|
3
|
Spinal Cord Involvement in Adult Mitochondrial Diseases: A Cohort Study. Life (Basel) 2021; 12:life12010005. [PMID: 35054398 PMCID: PMC8779700 DOI: 10.3390/life12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/26/2022] Open
Abstract
The central nervous system is metabolically very demanding and consequently vulnerable to defects of the mitochondrial respiratory chain. While the clinical manifestations and the corresponding radiological findings of the brain involvement in mitochondrial diseases (e.g., stroke-like episodes, signal changes of the basal ganglia, cerebral and cerebellar atrophy) are well known, at present there are few data on the spinal-cord abnormalities in these pathologies, in particular in adult subjects. In this study, we present a cross-sectional cohort study on the prevalence and characterization of spinal-cord involvement in adult patients with genetically defined mitochondrial diseases.
Collapse
|
4
|
Senthilvelan S, Sekar SS, Kesavadas C, Thomas B. Neuromitochondrial Disorders : Genomic Basis and an Algorithmic Approach to Imaging Diagnostics. Clin Neuroradiol 2021; 31:559-574. [PMID: 34106285 DOI: 10.1007/s00062-021-01030-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Mitochondrial disorders have been an enigma for a long time due to the varied clinical presentations. Although a genetic confirmation will be mandatory most of the time, half the number of Leigh syndrome would be negative for genetic mutations. There are a growing number of mutations in clinical practice, which escape detection on routine clinical exome sequencing. Imaging would render help in pointing towards a mitochondrial disorder. There are a few case reports which brief about specific mitochondrial mutations and their specific imaging appearance. This article tries to provide a comprehensive review on the imaging-genomic correlation of mitochondrial disorders with an objective of performing a specific genetic testing to arrive at an accurate diagnosis.
Collapse
Affiliation(s)
- Santhakumar Senthilvelan
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Sabarish S Sekar
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Bejoy Thomas
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India.
| |
Collapse
|
5
|
Di Nora C, Nalli C, Vendramin I, Livi U. Spinal cord and heart involvement in Kearns-Sayre syndrome: which link? Neuroradiology 2020; 63:7-8. [PMID: 33026462 DOI: 10.1007/s00234-020-02572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Concetta Di Nora
- Department of Cardiothoracic Science, Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.
| | - Chiara Nalli
- Department of Cardiothoracic Science, Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Igor Vendramin
- Department of Cardiothoracic Science, Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Ugolino Livi
- Department of Cardiothoracic Science, Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|
7
|
Tabarki B, Hakami W, Alkhuraish N, Tlili-Graies K, Alfadhel M. Spinal Cord Involvement in Pediatric-Onset Metabolic Disorders With Mendelian and Mitochondrial Inheritance. Front Pediatr 2020; 8:599861. [PMID: 33520891 PMCID: PMC7841137 DOI: 10.3389/fped.2020.599861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
Previous reviews have described the features of brain involvement in pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance, but only a few have focused on spinal cord abnormalities. An increasing number of metabolic disorders with Mendelian and mitochondrial inheritance in children with predominant spinal cord involvement has been recognized. Spinal cord involvement may be isolated or may occur more frequently with brain involvement. Timely diagnosis and occasional genetic counseling are needed for timely therapy. Therefore, clinicians must be aware of the clinical, laboratory, and radiographic features of these disorders. In this review, we describe pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance and predominant spinal cord involvement. Furthermore, we provide an overview of these conditions, including background information and examples that require rapid identification, focusing on treatable conditions; that would be catastrophic if they are not recognized.
Collapse
Affiliation(s)
- Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Wejdan Hakami
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nader Alkhuraish
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Tlili-Graies
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia.,Genetics and Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Abdullah Specialist Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|