1
|
Belwal P, Singh S. Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review. Comput Biol Med 2024; 185:109530. [PMID: 39693692 DOI: 10.1016/j.compbiomed.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Deep learning (DL) techniques represent a rapidly advancing field within artificial intelligence, gaining significant prominence in the detection and analysis of various medical conditions through the analysis of medical data. This study presents a systematic literature review (SLR) focused on deep learning methods for the detection and analysis of multiple sclerosis (MS) using magnetic resonance imaging (MRI). The initial search identified 401 articles, which were rigorously screened, a selection of 82 highly relevant studies. These selected studies primarily concentrate on key areas such as multiple sclerosis, deep learning, convolutional neural networks (CNN), lesion segmentation, and classification, reflecting their alignment with the current state of the art. This review comprehensively examines diverse deep-learning approaches for MS detection and analysis, offering a valuable resource for researchers. Additionally, it presents key insights by summarizing these DL techniques for MS detection and analysis using MRI in a structured tabular format.
Collapse
Affiliation(s)
- Priyanka Belwal
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| | - Surendra Singh
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| |
Collapse
|
2
|
Duarte KTN, Sidhu AS, Barros MC, Gobbi DG, McCreary CR, Saad F, Camicioli R, Smith EE, Bento MP, Frayne R. Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation. Front Comput Neurosci 2024; 18:1487877. [PMID: 39502452 PMCID: PMC11534601 DOI: 10.3389/fncom.2024.1487877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction White matter hyperintensities (WMHs) are frequently observed on magnetic resonance (MR) images in older adults, commonly appearing as areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR scans. Elevated WMH volumes are associated with a greater risk of dementia and stroke, even after accounting for vascular risk factors. Manual segmentation, while considered the ground truth, is both labor-intensive and time-consuming, limiting the generation of annotated WMH datasets. Un-annotated data are relatively available; however, the requirement of annotated data poses a challenge for developing supervised machine learning models. Methods To address this challenge, we implemented a multi-stage semi-supervised learning (M3SL) approach that first uses un-annotated data segmented by traditional processing methods ("bronze" and "silver" quality data) and then uses a smaller number of "gold"-standard annotations for model refinement. The M3SL approach enabled fine-tuning of the model weights with the gold-standard annotations. This approach was integrated into the training of a U-Net model for WMH segmentation. We used data from three scanner vendors (over more than five scanners) and from both cognitively normal (CN) adult and patients cohorts [with mild cognitive impairment and Alzheimer's disease (AD)]. Results An analysis of WMH segmentation performance across both scanner and clinical stage (CN, MCI, AD) factors was conducted. We compared our results to both conventional and transfer-learning deep learning methods and observed better generalization with M3SL across different datasets. We evaluated several metrics (F-measure, IoU, and Hausdorff distance) and found significant improvements with our method compared to conventional (p < 0.001) and transfer-learning (p < 0.001). Discussion These findings suggest that automated, non-machine learning, tools have a role in a multi-stage learning framework and can reduce the impact of limited annotated data and, thus, enhance model performance.
Collapse
Affiliation(s)
- Kauê T. N. Duarte
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Abhijot S. Sidhu
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Murilo C. Barros
- School of Technology, University of Campinas, Limeira, São Paulo, Brazil
| | - David G. Gobbi
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Cheryl R. McCreary
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Feryal Saad
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Eric E. Smith
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mariana P. Bento
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
3
|
Hu X, Liu L, Xiong M, Lu J. Application of artificial intelligence-based magnetic resonance imaging in diagnosis of cerebral small vessel disease. CNS Neurosci Ther 2024; 30:e14841. [PMID: 39045778 PMCID: PMC11267174 DOI: 10.1111/cns.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is an important cause of stroke, cognitive impairment, and other diseases, and its early quantitative evaluation can significantly improve patient prognosis. Magnetic resonance imaging (MRI) is an important method to evaluate the occurrence, development, and severity of CSVD. However, the diagnostic process lacks quantitative evaluation criteria and is limited by experience, which may easily lead to missed diagnoses and misdiagnoses. With the development of artificial intelligence technology based on deep learning, the extraction of high-dimensional features in imaging can assist doctors in clinical decision-making, and it has been widely used in brain function and mental disorders, and cardiovascular and cerebrovascular diseases. This paper summarizes the global research results in recent years and briefly describes the application of deep learning in evaluating CSVD signs in MRI imaging, including recent small subcortical infarcts, lacunes of presumed vascular origin, vascular white matter hyperintensity, enlarged perivascular spaces, cerebral microbleeds, brain atrophy, cortical superficial siderosis, and cortical cerebral microinfarct.
Collapse
Affiliation(s)
- Xiaofei Hu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Nuclear Medicine, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Ming Xiong
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Jie Lu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud PA. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris) 2024:S0035-3787(24)00522-8. [PMID: 38772806 DOI: 10.1016/j.neurol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Deep learning (DL) is an artificial intelligence technology that has aroused much excitement for predictive medicine due to its ability to process raw data modalities such as images, text, and time series of signals. OBJECTIVES Here, we intend to give the clinical reader elements to understand this technology, taking neuroinflammatory diseases as an illustrative use case of clinical translation efforts. We reviewed the scope of this rapidly evolving field to get quantitative insights about which clinical applications concentrate the efforts and which data modalities are most commonly used. METHODS We queried the PubMed database for articles reporting DL algorithms for clinical applications in neuroinflammatory diseases and the radiology.healthairegister.com website for commercial algorithms. RESULTS The review included 148 articles published between 2018 and 2024 and five commercial algorithms. The clinical applications could be grouped as computer-aided diagnosis, individual prognosis, functional assessment, the segmentation of radiological structures, and the optimization of data acquisition. Our review highlighted important discrepancies in efforts. The segmentation of radiological structures and computer-aided diagnosis currently concentrate most efforts with an overrepresentation of imaging. Various model architectures have addressed different applications, relatively low volume of data, and diverse data modalities. We report the high-level technical characteristics of the algorithms and synthesize narratively the clinical applications. Predictive performances and some common a priori on this topic are finally discussed. CONCLUSION The currently reported efforts position DL as an information processing technology, enhancing existing modalities of paraclinical investigations and bringing perspectives to make innovative ones actionable for healthcare.
Collapse
Affiliation(s)
- S Demuth
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France.
| | - J Paris
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - I Faddeenkov
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - J De Sèze
- Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France; Department of Neurology, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France; Inserm CIC 1434 Clinical Investigation Center, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - P-A Gourraud
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; "Data clinic", Department of Public Health, University Hospital of Nantes, Nantes, France
| |
Collapse
|
5
|
Kuwabara M, Ikawa F, Nakazawa S, Koshino S, Ishii D, Kondo H, Hara T, Maeda Y, Sato R, Kaneko T, Maeyama S, Shimahara Y, Horie N. Artificial intelligence for volumetric measurement of cerebral white matter hyperintensities on thick-slice fluid-attenuated inversion recovery (FLAIR) magnetic resonance images from multiple centers. Sci Rep 2024; 14:10104. [PMID: 38698152 PMCID: PMC11065995 DOI: 10.1038/s41598-024-60789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
We aimed to develop a new artificial intelligence software that can automatically extract and measure the volume of white matter hyperintensities (WMHs) in head magnetic resonance imaging (MRI) using only thick-slice fluid-attenuated inversion recovery (FLAIR) sequences from multiple centers. We enrolled 1092 participants in Japan, comprising the thick-slice Private Dataset. Based on 207 randomly selected participants, neuroradiologists annotated WMHs using predefined guidelines. The annotated images of participants were divided into training (n = 138) and test (n = 69) datasets. The WMH segmentation model comprised a U-Net ensemble and was trained using the Private Dataset. Two other models were trained for validation using either both thin- and thick-slice MRI datasets or the thin-slice dataset alone. The voxel-wise Dice similarity coefficient (DSC) was used as the evaluation metric. The model trained using only thick-slice MRI showed a DSC of 0.820 for the test dataset, which is comparable to the accuracy of human readers. The model trained with the additional thin-slice dataset showed only a slightly improved DSC of 0.822. This automatic WMH segmentation model comprising a U-Net ensemble trained on a thick-slice FLAIR MRI dataset is a promising new method. Despite some limitations, this model may be applicable in clinical practice.
Collapse
Affiliation(s)
- Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Fusao Ikawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan.
- Department of Neurosurgery, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, Shimane, 693-0068, Japan.
| | - Shinji Nakazawa
- LPIXEL Inc, 1-6-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| | - Saori Koshino
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hiroshi Kondo
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Ryo Sato
- LPIXEL Inc, 1-6-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| | - Taiki Kaneko
- LPIXEL Inc, 1-6-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| | - Shiyuki Maeyama
- LPIXEL Inc, 1-6-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| | - Yuki Shimahara
- LPIXEL Inc, 1-6-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Spagnolo F, Depeursinge A, Schädelin S, Akbulut A, Müller H, Barakovic M, Melie-Garcia L, Bach Cuadra M, Granziera C. How far MS lesion detection and segmentation are integrated into the clinical workflow? A systematic review. Neuroimage Clin 2023; 39:103491. [PMID: 37659189 PMCID: PMC10480555 DOI: 10.1016/j.nicl.2023.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Over the past few years, the deep learning community has developed and validated a plethora of tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap between validating models technically and clinically. To this end, a six-step framework necessary for the development, validation, and integration of quantitative tools in the clinic was recently proposed under the name of the Quantitative Neuroradiology Initiative (QNI). AIMS Investigate to what extent automatic tools in MS fulfill the QNI framework necessary to integrate automated detection and segmentation into the clinical neuroradiology workflow. METHODS Adopting the systematic Cochrane literature review methodology, we screened and summarised published scientific articles that perform automatic MS lesions detection and segmentation. We categorised the retrieved studies based on their degree of fulfillment of QNI's six-steps, which include a tool's technical assessment, clinical validation, and integration. RESULTS We found 156 studies; 146/156 (94%) fullfilled the first QNI step, 155/156 (99%) the second, 8/156 (5%) the third, 3/156 (2%) the fourth, 5/156 (3%) the fifth and only one the sixth. CONCLUSIONS To date, little has been done to evaluate the clinical performance and the integration in the clinical workflow of available methods for MS lesion detection/segmentation. In addition, the socio-economic effects and the impact on patients' management of such tools remain almost unexplored.
Collapse
Affiliation(s)
- Federico Spagnolo
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Adrien Depeursinge
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabine Schädelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aysenur Akbulut
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Ankara University School of Medicine, Ankara, Turkey
| | - Henning Müller
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; The Sense Research and Innovation Center, Lausanne and Sion, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Radiology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Wenger KJ, Koldijk CE, Hattingen E, Porto L, Kurre W. Characterization of MRI White Matter Signal Abnormalities in the Pediatric Population. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020206. [PMID: 36832335 PMCID: PMC9955075 DOI: 10.3390/children10020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
(1) Background and Purpose: The aim of this study was to retrospectively characterize WMSAs in an unselected patient cohort at a large pediatric neuroimaging facility, in order to learn more about the spectrum of the underlying disorders encountered in everyday clinical practice. (2) Materials and Methods: Radiology reports of 5166 consecutive patients with standard brain MRI (2006-2018) were searched for predefined keywords describing WMSAs. A neuroradiology specialist enrolled patients with WMSAs following a structured approach. Imaging characteristics, etiology (autoimmune disorders, non-genetic hypoxic and ischemic insults, traumatic white matter injuries, no final diagnosis due to insufficient clinical information, "non-specific" WMSAs, infectious white matter damage, leukodystrophies, toxic white matter injuries, inborn errors of metabolism, and white matter damage caused by tumor infiltration/cancer-like disease), and age/gender distribution were evaluated. (3) Results: Overall, WMSAs were found in 3.4% of pediatric patients scanned at our and referring hospitals within the ten-year study period. The majority were found in the supratentorial region only (87%) and were non-enhancing (78% of CE-MRI). WMSAs caused by autoimmune disorders formed the largest group (23%), followed by "non-specific" WMSAs (18%), as well as non-genetic hypoxic and ischemic insults (17%). The majority were therefore acquired as opposed to inherited. Etiology-based classification of WMSAs was affected by age but not by gender. In 17% of the study population, a definite diagnosis could not be established due to insufficient clinical information (mostly external radiology consults). (4) Conclusions: An "integrated diagnosis" that combines baseline demographics, including patient age as an important factor, clinical characteristics, and additional diagnostic workup with imaging patterns can be made in the majority of cases.
Collapse
Affiliation(s)
- Katharina J. Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-5462
| | | | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Luciana Porto
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Wiebke Kurre
- Institute of Diagnostic and Interventional Radiology/Neuroradiology, Municipal Hospital Passau, 94032 Passau, Germany
| |
Collapse
|
8
|
Deep learning reconstruction in pediatric brain MRI: comparison of image quality with conventional T2-weighted MRI. Neuroradiology 2023; 65:207-214. [PMID: 36156109 DOI: 10.1007/s00234-022-03053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Deep learning-based MRI reconstruction has recently been introduced to improve image quality. This study aimed to evaluate the performance of deep learning reconstruction in pediatric brain MRI. METHODS A total of 107 consecutive children who underwent 3.0 T brain MRI were included in this study. T2-weighted brain MRI was reconstructed using the three different reconstruction modes: deep learning reconstruction, conventional reconstruction with an intensity filter, and original T2 image without a filter. Two pediatric radiologists independently evaluated the following image quality parameters of three reconstructed images on a 5-point scale: overall image quality, image noisiness, sharpness of gray-white matter differentiation, truncation artifact, motion artifact, cerebrospinal fluid and vascular pulsation artifacts, and lesion conspicuity. The subjective image quality parameters were compared among the three reconstruction modes. Quantitative analysis of the signal uniformity using the coefficient of variation was performed for each reconstruction. RESULTS The overall image quality, noisiness, and gray-white matter sharpness were significantly better with deep learning reconstruction than with conventional or original reconstruction (all P < 0.001). Deep learning reconstruction had significantly fewer truncation artifacts than the other two reconstructions (all P < 0.001). Motion and pulsation artifacts showed no significant differences among the three reconstruction modes. For 36 lesions in 107 patients, lesion conspicuity was better with deep learning reconstruction than original reconstruction. Deep learning reconstruction showed lower signal variation compared to conventional and original reconstructions. CONCLUSION Deep learning reconstruction can reduce noise and truncation artifacts and improve lesion conspicuity and overall image quality in pediatric T2-weighted brain MRI.
Collapse
|