1
|
Lee DA, Lee WH, Lee HJ, Park KM. Alterations in the multilayer network in patients with rapid eye movement sleep behaviour disorder. J Sleep Res 2024; 33:e14182. [PMID: 38385964 DOI: 10.1111/jsr.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to reveal the pathophysiology of isolated rapid eye movement sleep behaviour disorder (RBD) in patients using multilayer network analysis. Participants eligible for isolated RBD were included and verified via polysomnography. Both iRBD patients and healthy controls underwent brain MRI, including T1-weighted imaging and diffusion tensor imaging. Grey matter matrix was derived from T1-weighted images using a morphometric similarity network. White matter matrix was formed from diffusion tensor imaging-based structural connectivity. Multilayer network analysis of grey and white matter was performed using graph theory. We studied 29 isolated RBD patients and 30 healthy controls. Patients exhibited a higher average overlap degree (27.921 vs. 23.734, p = 0.002) and average multilayer clustering coefficient (0.474 vs. 0.413, p = 0.002) compared with controls. Additionally, several regions showed significant differences in the degree of overlap and multilayer clustering coefficient between patients with isolated RBD and healthy controls at the nodal level. The degree of overlap in the left medial orbitofrontal, left posterior cingulate, and right paracentral nodes and the multilayer clustering coefficients in the left lateral occipital, left rostral middle frontal, right fusiform, right inferior posterior parietal, and right parahippocampal nodes were higher in patients with isolated RBD than in healthy controls. We found alterations in the multilayer network at the global and nodal levels in patients with isolated RBD, and these changes may be associated with the pathophysiology of isolated RBD. Multilayer network analysis can be used widely to explore the mechanisms underlying various neurological disorders.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Lee
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
2
|
Wenhong C, Xiaoying M, Lingli S, Binyun T, Yining W, Mingming Z, Yian L, Lixia Q, Wenyu H, Fengjin P. Assessing resting-state brain functional connectivity in adolescents and young adults with narcolepsy using functional near-infrared spectroscopy. Front Hum Neurosci 2024; 18:1373043. [PMID: 38606200 PMCID: PMC11007108 DOI: 10.3389/fnhum.2024.1373043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
This study aimed to elucidate the alterations in the prefrontal cortex's functional connectivity and network topology in narcolepsy patients using functional near-infrared spectroscopy (fNIRS). Twelve narcolepsy-diagnosed patients from Guangxi Zhuang Autonomous Region's People's Hospital Sleep Medicine Department and 11 matched healthy controls underwent resting fNIRS scans. Functional connectivity and graph theory analyses were employed to assess the prefrontal cortex network's properties and their correlation with clinical features. Results indicated increased functional connectivity in these adolescent and young adult patients with narcolepsy, with significant variations in metrics like average degree centrality and node efficiency, particularly in the left middle frontal gyrus. These alterations showed correlations with clinical symptoms, including depression and sleep efficiency. However, the significance of these findings was reduced post False Discovery Rate adjustment, suggesting a larger sample size is needed for validation. In conclusion, the study offers initial observations that alterations in the prefrontal cortex's functional connectivity may potentially act as a neurobiological indicator of narcolepsy, warranting further investigation with a larger cohort to substantiate these findings and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Chen Wenhong
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Mo Xiaoying
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shi Lingli
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Tang Binyun
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Wen Yining
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zhao Mingming
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lu Yian
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qin Lixia
- Guangxi Clinical Reserch Center for Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hu Wenyu
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Pan Fengjin
- Department of Sleep Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
3
|
Juvodden HT, Alnæs D, Lund MJ, Agartz I, Andreassen OIA, Server A, Thorsby PM, Westlye LT, Knudsen Heier S. Larger hypothalamic volume in narcolepsy type 1. Sleep 2023; 46:zsad173. [PMID: 37463428 PMCID: PMC10636249 DOI: 10.1093/sleep/zsad173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is a neurological sleep disorder. Postmortem studies have shown 75%-90% loss of the 50 000-70 000 hypocretin-producing neurons and 64%-94% increase in the 64 000-120 000 histaminergic neurons and conflicting indications of gliosis in the hypothalamus of NT1 patients. The aim of this study was to compare MRI-based volumes of the hypothalamus in patients with NT1 and controls in vivo. METHODS We used a segmentation tool based on deep learning included in Freesurfer and computed the volume of the whole hypothalamus, left/right part of the hypothalamus, and 10 hypothalamic subregions. We included 54 patients with post-H1N1 NT1 (39 females, mean age 21.8 ± 11.0 years) and 114 controls (77 females, mean age 23.2 ± 9.0 years). Group differences were tested with general linear models using permutation testing in Permutation Analysis of Linear Models and evaluated after 10 000 permutations, yielding two-tailed P-values. Furthermore, a stepwise Bonferroni correction was performed after dividing hypothalamus into smaller regions. RESULTS The analysis revealed larger volume for patients compared to controls for the whole hypothalamus (Cohen's d = 0.71, p = 0.0028) and for the left (d = 0.70, p = 0.0037) and right part of the hypothalamus (d = 0.65, p = 0.0075) and left (d = 0.72, p = 0.0036) and right tubular-inferior (d = 0.71, p = 0.0037) hypothalamic subregions. CONCLUSIONS In conclusion, patients with post-H1N1 NT1 showed significantly larger hypothalamic volume than controls, in particular in the tubular-inferior subregions which could reflect several processes as previous studies have indicated neuroinflammation, gliosis, and changes in the numbers of different cell types.
Collapse
Affiliation(s)
- Hilde T Juvodden
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
| | - Dag Alnæs
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Departement of Psychology, Pedagogy and Law, Kristiania University College, Oslo, Norway
| | - Martina J Lund
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - OIe A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Andres Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine Knudsen Heier
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|