1
|
Sablok G, Chen TW, Lee CC, Yang C, Gan RC, Wegrzyn JL, Porta NL, Nayak KC, Huang PJ, Varotto C, Tang P. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications. DNA Res 2017; 24:327-332. [PMID: 28419256 PMCID: PMC5499650 DOI: 10.1093/dnares/dsw044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/
Collapse
Affiliation(s)
- Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Ting-Wen Chen
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Chi-Ching Lee
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Chi Yang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Ruei-Chi Gan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University 10 of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043 USA
| | - Nicola L Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy.,MOUNTFOR Project Centre, European Forest Institute, Via E. Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Kinshuk C Nayak
- Bioinformatics Centre, Institute of Life Sciences, Department of Biotechnology, Govt. India, Nalco Square, Bhubaneswar - 751 023, India
| | - Po-Jung Huang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Petrus Tang
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan.,Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Santos MB, Stech M. Tackling relationships and species circumscriptions of Octoblepharum, an enigmatic genus of haplolepideous mosses (Dicranidae, Bryophyta). SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1213325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marina Bonfim Santos
- Naturalis Biodiversity Center, P. O. Box 9517, 2300 RA Leiden, the Netherlands
- Leiden University, Leiden, the Netherlands
| | - Michael Stech
- Naturalis Biodiversity Center, P. O. Box 9517, 2300 RA Leiden, the Netherlands
- Leiden University, Leiden, the Netherlands
| |
Collapse
|
3
|
Villanueva L, Rijpstra WIC, Schouten S, Damsté JSS. Genetic biomarkers of the sterol-biosynthetic pathway in microalgae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:35-44. [PMID: 24596261 DOI: 10.1111/1758-2229.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 05/26/2023]
Abstract
Sterols are cyclic isoprenoid lipids present in all eukaryotes. These compounds have been used to determine the composition of algal communities in marine and lake environments, and because of their preservation potential have been used to reconstruct the evolution of eukaryotes. In the last years, there have been major advances in understanding the sterol biosynthetic pathways and the enzymes involved. Here, we have explored the diversity and phylogenetic distribution of the gene coding the cycloartenol synthase (CS), a key enzyme of the phytosterol biosynthetic pathway. We propose a gene-based approach that can be used to assess the sterol-forming potential of algal groups. CS coding gene was annotated in genomes of microalgae using protein homology with previously annotated CS sequences. Primers for the detection of CS gene sequences of diatoms, one of the most dominant groups of microalgae, were designed and evaluated in cultures and environmental samples. A comparison of the phylogeny of the recovered CS sequences in combination with sequence data of the gene rbcL coding for the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) demonstrates the potential of the CS gene as phylogenetic marker, as well as an indicator for the identity of sterol-producing organisms in the environment.
Collapse
Affiliation(s)
- Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 179AB, Den Burg, The Netherlands
| | | | | | | |
Collapse
|
4
|
Nair RR, Nandhini MB, Sethuraman T, Doss G. Mutational pressure dictates synonymous codon usage in freshwater unicellular α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301. SPRINGERPLUS 2013; 2:492. [PMID: 24255825 PMCID: PMC3825069 DOI: 10.1186/2193-1801-2-492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
Background Comparative study of synonymous codon usage variations and factors influencing its diversification in α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301 has not been reported so far. In the present study, we investigated various factors associated with synonymous codon usage in the genomes of P. chromatophora and S. elongatus PCC6301 and findings were discussed. Results Mutational pressure was identified as the major force behind codon usage variation in both genomes. However, correspondence analysis revealed that intensity of mutational pressure was higher in S. elongatus than in P. chromatophora. Living habitats were also found to determine synonymous codon usage variations across the genomes of P. chromatophora and S. elongatus. Conclusions Whole genome sequencing of α-cyanobacteria in the cyanobium clade would certainly facilitate the understanding of synonymous codon usage patterns and factors contributing its diversification in presumed ancestors of photosynthetic endosymbionts of P. chromatophora.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Department of Biotechnology, Vignan University, Vadlamudi, 522 213 Guntur, Andhra Pradesh India
| | | | | | | |
Collapse
|
5
|
Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, Nagarajan S, Rao NSP, Ganesh D. Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 2012; 8:1096-104. [PMID: 23251044 PMCID: PMC3523224 DOI: 10.6026/97320630081096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 01/27/2023] Open
Abstract
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A(3), T(3), G(3), C(3), GC(3)) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC(3) plot grouped majority of the analyzed genes on or just below the left side of the expected GC(3) curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.
Collapse
Affiliation(s)
- Rahul R Nair
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Manivasagam B Nandhini
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Elango Monalisha
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Kavitha Murugan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Thilaga Sethuraman
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Sangeetha Nagarajan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Nayani Surya Prakash Rao
- Division of Plant Breeding, Central Coffee Research Institute, Coffee Research Station Post 577 117, Chikmagalur District, Karnataka, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| |
Collapse
|
6
|
Selva Kumar C, Nair RR, Sivaramakrishnan KG, Ganesh D, Janarthanan S, Arunachalam M, Sivaruban T. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects. ACTA ACUST UNITED AC 2012; 23:447-60. [PMID: 22943112 DOI: 10.3109/19401736.2012.710203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.
Collapse
Affiliation(s)
- C Selva Kumar
- Department of Zoology, University of Madras, Chennai 600 025, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
7
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, Hall JD, Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, Olmstead RG, Renzaglia KS, Wolf PG. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol 2010; 10:321. [PMID: 20969798 PMCID: PMC3087542 DOI: 10.1186/1471-2148-10-321] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 10/23/2010] [Indexed: 11/17/2022] Open
Abstract
Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae.
Collapse
Affiliation(s)
- Kenneth G Karol
- The Lewis B, and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, NY 10458, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee S, Weon S, Lee S, Kang C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol Bioinform Online 2010; 6:47-55. [PMID: 20535230 PMCID: PMC2880845 DOI: 10.4137/ebo.s4608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We propose a simple, sensitive measure of synonymous codon usage bias, the Relative Codon Adaptation Index (rCAI), as a way to discriminate better between highly biased and unbiased regions, compared with the widely used Codon Adaptation Index (CAI). CAI is a geometric mean of the relative usage of codons in a gene, and is calculated using the codon usage table trained with a set of highly expressed genes. In contrast, rCAI is computed by subtracting the background codon usage trained with two noncoding frames of highly expressed genes from the codon usage in the coding frame. rCAI has higher signal-to-noise ratio than CAI, considering that noncoding frames would not show codon bias. Translation efficiency and protein abundance correlates comparably or better with rCAI than CAI or other measures such as ‘effective number of codons’ and ‘SCUMBLE offsets’. Within overlapping coding regions, one of the two coding frames dominates in codon usage bias according to rCAI. Presumably, rCAI could substitute CAI in diverse applications.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
10
|
Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 2007; 8:174. [PMID: 17573971 PMCID: PMC1925096 DOI: 10.1186/1471-2164-8-174] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/15/2007] [Indexed: 11/20/2022] Open
Abstract
Background The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition. Results The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. Conclusion SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as ycf15 and ycf68 is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.
Collapse
Affiliation(s)
- Linda A Raubeson
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA
| | - Rhiannon Peery
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA
| | - Timothy W Chumley
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chris Dziubek
- Biological Sciences, Central Washington University, Ellensburg, WA 98926-7537, USA
| | - H Matthew Fourcade
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Program in Evolutionary Genomics, Walnut Creek, CA 94547, USA
| | - Jeffrey L Boore
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Program in Evolutionary Genomics, Walnut Creek, CA 94547, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol 2006; 6:77. [PMID: 17020608 PMCID: PMC1626487 DOI: 10.1186/1471-2148-6-77] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022] Open
Abstract
Background The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content. Results The Drimys, Liriodendron, and Piper plastid genomes are very similar in size at 160,604, 159,886 bp, and 160,624 bp, respectively. Gene content and order are nearly identical to many other unrearranged angiosperm plastid genomes, including Calycanthus, the other published magnoliid genome. Overall GC content ranges from 34–39%, and coding regions have a substantially higher GC content than non-coding regions. Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Phylogenetic analyses using parsimony and likelihood methods and sequences of 61 protein-coding genes provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. Strong support is reported for monocots and eudicots as sister clades with magnoliids diverging before the monocot-eudicot split. The trees also provided moderate or strong support for the position of Amborella as sister to a clade including all other angiosperms. Conclusion Evolutionary comparisons of three new magnoliid plastid genome sequences, combined with other published angiosperm genomes, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots.
Collapse
Affiliation(s)
- Zhengqiu Cai
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| | - Cynthia Penaflor
- Biology Department, 373 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Jennifer V Kuehl
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA
| | | | - John E Carlson
- School of Forest Resources and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Claude W dePamphilis
- Department of Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey L Boore
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA
| | - Robert K Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Patterson Laboratories 141, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
12
|
Cutter AD, Wasmuth JD, Blaxter ML. The evolution of biased codon and amino acid usage in nematode genomes. Mol Biol Evol 2006; 23:2303-15. [PMID: 16936139 DOI: 10.1093/molbev/msl097] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the degeneracy of the genetic code, whereby different codons encode the same amino acid, alternative codons and amino acids are utilized nonrandomly within and between genomes. Such biases in codon and amino acid usage have been demonstrated extensively in prokaryote genomes and likely reflect a balance between the action of mutation, selection, and genetic drift. Here, we quantify the effects of selection and mutation drift as causes of codon and amino acid-usage bias in a large collection of nematode partial genomes from 37 species spanning approximately 700 Myr of evolution, as inferred from expressed sequence tag (EST) measures of gene expression and from base composition variation. Average G + C content at silent sites among these taxa ranges from 10% to 63%, and EST counts range more than 100-fold, underlying marked differences between the identities of major codons and optimal codons for a given species as well as influencing patterns of amino acid abundance among taxa. Few species in our sample demonstrate a dominant role of selection in shaping intragenomic codon-usage biases, and these are principally free living rather than parasitic nematodes. This suggests that deviations in effective population size among species, with small effective sizes among parasites, are partly responsible for species differences in the extent to which selection shapes patterns of codon usage. Nevertheless, a consensus set of optimal codons emerges that is common to most taxa, indicating that, with some notable exceptions, selection for translational efficiency and accuracy favors similar sets of codons regardless of the major codon-usage trends defined by base compositional properties of individual nematode genomes.
Collapse
Affiliation(s)
- Asher D Cutter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|