1
|
Nishihara A, Tsukatani Y, Azai C, Nobu MK. Illuminating the coevolution of photosynthesis and Bacteria. Proc Natl Acad Sci U S A 2024; 121:e2322120121. [PMID: 38875151 PMCID: PMC11194577 DOI: 10.1073/pnas.2322120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Life harnessing light energy transformed the relationship between biology and Earth-bringing a massive flux of organic carbon and oxidants to Earth's surface that gave way to today's organotrophy- and respiration-dominated biosphere. However, our understanding of how life drove this transition has largely relied on the geological record; much remains unresolved due to the complexity and paucity of the genetic record tied to photosynthesis. Here, through holistic phylogenetic comparison of the bacterial domain and all photosynthetic machinery (totally spanning >10,000 genomes), we identify evolutionary congruence between three independent biological systems-bacteria, (bacterio)chlorophyll-mediated light metabolism (chlorophototrophy), and carbon fixation-and uncover their intertwined history. Our analyses uniformly mapped progenitors of extant light-metabolizing machinery (reaction centers, [bacterio]chlorophyll synthases, and magnesium-chelatases) and enzymes facilitating the Calvin-Benson-Bassham cycle (form I RuBisCO and phosphoribulokinase) to the same ancient Terrabacteria organism near the base of the bacterial domain. These phylogenies consistently showed that extant phototrophs ultimately derived light metabolism from this bacterium, the last phototroph common ancestor (LPCA). LPCA was a non-oxygen-generating (anoxygenic) phototroph that already possessed carbon fixation and two reaction centers, a type I analogous to extant forms and a primitive type II. Analyses also indicate chlorophototrophy originated before LPCA. We further reconstructed evolution of chlorophototrophs/chlorophototrophy post-LPCA, including vertical inheritance in Terrabacteria, the rise of oxygen-generating chlorophototrophy in one descendant branch near the Great Oxidation Event, and subsequent emergence of Cyanobacteria. These collectively unveil a detailed view of the coevolution of light metabolism and Bacteria having clear congruence with the geological record.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
| | - Yusuke Tsukatani
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Shiga525-8577, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo112-8551, Japan
| | - Masaru K. Nobu
- Department of Life Science and Biotechnology, The National Institute of Advanced Industrial Science and Technology, Ibaraki305-0817, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa237-0061, Japan
| |
Collapse
|
2
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01046-6. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Cardona T, Rutherford AW. Evolution of Photochemical Reaction Centres: More Twists? TRENDS IN PLANT SCIENCE 2019; 24:1008-1021. [PMID: 31351761 DOI: 10.1016/j.tplants.2019.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 05/27/2023]
Abstract
One of the earliest events in the molecular evolution of photosynthesis is the structural and functional specialisation of type I (ferredoxin-reducing) and type II (quinone-reducing) reaction centres. In this opinion article we point out that the homodimeric type I reaction centre of heliobacteria has a calcium-binding site with striking structural similarities to the Mn4CaO5 cluster of photosystem II. These similarities indicate that most of the structural elements required to evolve water oxidation chemistry were present in the earliest reaction centres. We suggest that the divergence of type I and type II reaction centres was made possible by a drastic structural shift linked to a change in redox properties that coincided with or facilitated the origin of photosynthetic water oxidation.
Collapse
Affiliation(s)
- Tanai Cardona
- Imperial College London, Department of Life Sciences, London, UK. @imperial.ac.uk
| | | |
Collapse
|
4
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
5
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
6
|
Gisriel C, Sarrou I, Ferlez B, Golbeck JH, Redding KE, Fromme R. Structure of a symmetric photosynthetic reaction center-photosystem. Science 2017; 357:1021-1025. [PMID: 28751471 DOI: 10.1126/science.aan5611] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/19/2017] [Indexed: 11/02/2022]
Abstract
Reaction centers are pigment-protein complexes that drive photosynthesis by converting light into chemical energy. It is believed that they arose once from a homodimeric protein. The symmetry of a homodimer is broken in heterodimeric reaction-center structures, such as those reported previously. The 2.2-angstrom resolution x-ray structure of the homodimeric reaction center-photosystem from the phototroph Heliobacterium modesticaldum exhibits perfect C2 symmetry. The core polypeptide dimer and two small subunits coordinate 54 bacteriochlorophylls and 2 carotenoids that capture and transfer energy to the electron transfer chain at the center, which performs charge separation and consists of 6 (bacterio)chlorophylls and an iron-sulfur cluster; unlike other reaction centers, it lacks a bound quinone. This structure preserves characteristics of the ancestral reaction center, providing insight into the evolution of photosynthesis.
Collapse
Affiliation(s)
- Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.,Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. .,Center of Applied Structural Discovery, Biodesign Institute, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Cardona T. Photosystem II is a Chimera of Reaction Centers. J Mol Evol 2017; 84:149-151. [PMID: 28224181 DOI: 10.1007/s00239-017-9784-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Cardona T. Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? FRONTIERS IN PLANT SCIENCE 2016; 7:257. [PMID: 26973693 PMCID: PMC4773611 DOI: 10.3389/fpls.2016.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 05/21/2023]
Abstract
Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis.
Collapse
|
9
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Fischer WW, Hemp J, Johnson JE. Manganese and the Evolution of Photosynthesis. ORIGINS LIFE EVOL B 2015; 45:351-7. [PMID: 26017176 DOI: 10.1007/s11084-015-9442-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022]
Abstract
Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet-it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn(2+), and ultimately water.
Collapse
Affiliation(s)
- Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA,
| | | | | |
Collapse
|
11
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
12
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Noguchi T. Fourier transform infrared spectroscopy of special pair bacteriochlorophylls in homodimeric reaction centers of heliobacteria and green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2010; 104:321-331. [PMID: 20094792 DOI: 10.1007/s11120-009-9509-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/25/2009] [Indexed: 05/28/2023]
Abstract
Heliobacteria and green sulfur bacteria have type I homodimeric reaction centers analogous to photosystem I. One remaining question regarding these homodimeric reaction centers is whether the structures and electron transfer reactions are truly symmetric or not. This question is relevant to the origin of the heterodimeric reaction centers, such as photosystem I and type II reaction centers. In this mini-review, Fourier transform infrared studies on the special pair bacteriochlorophylls, P798 in heliobacteria and P840 in green sulfur bacteria, are summarized. The data are reinterpreted in the light of the X-ray crystallographic structure of photosystem I and the sequence alignments of type I reaction center proteins, and discussed in terms of hydrogen bonding interactions and the symmetry of charge distribution over the dimer.
Collapse
Affiliation(s)
- Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
15
|
Nitschke W, van Lis R, Schoepp-Cothenet B, Baymann F. The "green" phylogenetic clade of Rieske/cytb complexes. PHOTOSYNTHESIS RESEARCH 2010; 104:347-355. [PMID: 20130997 DOI: 10.1007/s11120-010-9532-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/16/2010] [Indexed: 05/28/2023]
Abstract
More than a decade ago, Heliobacteria were recognised to contain a Rieske/cytb complex in which the cytochrome b subunit is split into two separate proteins, a peculiar feature characteristic of the cyanobacterial and plastidic b (6) f complex. The common presence of RCI-type reaction centres further emphasise possible evolutionary links between Heliobacteria, Chlorobiaceae and Cyanobacteria. In this contribution, we further explore the evolutionary relationships among these three phototrophic lineages by both molecular phylogeny and consideration of phylogenetic marker traits of the superfamily of Rieske/cytb complexes. The combination of these two methods suggests the existence of a "green" clade involving many non-phototrophs in addition to the mentioned RCI-type photosynthetic organisms. Structural and functional idiosyncrasies are (re-)interpreted in the framework of evolutionary biology and more specifically evolutionary bioenergetics.
Collapse
Affiliation(s)
- W Nitschke
- BIP, Centre National de la Recherche Scientifique, UPR9036, IFR88, 31 Chemin Joseph Aiguier, Marseille, France.
| | | | | | | |
Collapse
|
16
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
17
|
Sridharan A, Muthuswamy J, Pizziconi VB. Optoelectronic energy transfer at novel biohybrid interfaces using light harvesting complexes from Chloroflexus aurantiacus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6508-6516. [PMID: 19405485 DOI: 10.1021/la900112p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In nature, nanoscale supramolecular light harvesting complexes initiate the photosynthetic energy collection process at high quantum efficiencies. In this study, the distinctive antenna structure from Chloroflexus aurantiacusthe chlorosomeis assessed for potential exploitation in novel biohybrid optoelectronic devices. Electrochemical characterization of bacterial fragments containing intact chlorosomes with the photosynthetic apparatus show an increase in the charge storage density near the working electrode upon light stimulation and suggest that chlorosomes contribute approximately one-third of the overall photocurrent. Further, isolated chlorosomes (without additional photosynthetic components, e.g., reaction centers, biochemical mediators) produce a photocurrent (approximately 8-10 nA) under light saturation conditions. Correlative experiments indicate that the main chlorosome pigment, bacteriochlorophyll-c, contributes to the photocurrent via an oxidative mechanism. The results reported herein are the first to demonstrate that isolated chlorosomes (lipid-enclosed sacs of pigments) directly transduce light energy in an electrochemical manner, laying an alternative, biomimetic approach for designing photosensitized interfaces in biofuel cells and biomedical devices, such as bioenhanced retinal prosthetics.
Collapse
Affiliation(s)
- Arati Sridharan
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
18
|
Chen M, Zhang Y. Tracking the molecular evolution of photosynthesis through characterization of atomic contents of the photosynthetic units. PHOTOSYNTHESIS RESEARCH 2008; 97:255-261. [PMID: 18766462 DOI: 10.1007/s11120-008-9356-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 08/13/2008] [Indexed: 05/26/2023]
Abstract
Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|
19
|
Schwartzman D, Caldeira K, Pavlov A. Cyanobacterial emergence at 2.8 gya and greenhouse feedbacks. ASTROBIOLOGY 2008; 8:187-203. [PMID: 18237259 DOI: 10.1089/ast.2006.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Apparent cyanobacterial emergence at about 2.8 Gya coincides with the negative excursion in the organic carbon isotope record, which is the first strong evidence for the presence of atmospheric methane. The existence of weathering feedbacks in the carbonate-silicate cycle suggests that atmospheric and oceanic CO2 concentrations would have been high prior to the presence of a methane greenhouse (and thus the ocean would have had high bicarbonate concentrations). With the onset of a methane greenhouse, carbon dioxide concentrations would decrease. Bicarbonate has been proposed as the preferred reductant that preceded water for oxygenic photosynthesis in a bacterial photosynthetic precursor to cyanobacteria; with the drop of carbon dioxide level, Archean cyanobacteria emerged using water as a reductant instead of bicarbonate (Dismukes et al., 2001). Our thermodynamic calculations, with regard to this scenario, give at least a tenfold drop in aqueous CO2 levels with the onset of a methane-dominated greenhouse, assuming surface temperatures of about 60 degrees C and a drop in the level of atmospheric carbon dioxide from about 1 to 0.1 bars. The buildup of atmospheric methane could have been triggered by the boost in oceanic organic productivity that arose from the emergence of pre-cyanobacterial oxygenic phototrophy at about 2.8-3.0 Gya; high temperatures may have precluded an earlier emergence. A greenhouse transition timescale on the order of 50-100 million years is consistent with results from modeling the carbonate-silicate cycle. This is an alternative hypothesis to proposals of a tectonic driver for this apparent greenhouse transition.
Collapse
Affiliation(s)
- David Schwartzman
- Department of Biology, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
20
|
Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 2006; 14:488-96. [PMID: 16997562 DOI: 10.1016/j.tim.2006.09.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/28/2006] [Accepted: 09/07/2006] [Indexed: 12/01/2022]
Abstract
Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven, genome sequences are (or soon will be) available for >100 strains from these phyla. Present knowledge of photosynthesis is almost exclusively based on data derived from cultivated species but metagenomic studies can reveal new organisms with novel combinations of photosynthetic and phototrophic components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result of insights from genome and metagenome sequencing.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
21
|
Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 2006; 103:13126-31. [PMID: 16924101 PMCID: PMC1551899 DOI: 10.1073/pnas.0605709103] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparative analysis of 15 complete cyanobacterial genome sequences, including "near minimal" genomes of five strains of Prochlorococcus spp., revealed 1,054 protein families [core cyanobacterial clusters of orthologous groups of proteins (core CyOGs)] encoded in at least 14 of them. The majority of the core CyOGs are involved in central cellular functions that are shared with other bacteria; 50 core CyOGs are specific for cyanobacteria, whereas 84 are exclusively shared by cyanobacteria and plants and/or other plastid-carrying eukaryotes, such as diatoms or apicomplexans. The latter group includes 35 families of uncharacterized proteins, which could also be involved in photosynthesis. Only a few components of cyanobacterial photosynthetic machinery are represented in the genomes of the anoxygenic phototrophic bacteria Chlorobium tepidum, Rhodopseudomonas palustris, Chloroflexus aurantiacus, or Heliobacillus mobilis. These observations, coupled with recent geological data on the properties of the ancient phototrophs, suggest that photosynthesis originated in the cyanobacterial lineage under the selective pressures of UV light and depletion of electron donors. We propose that the first phototrophs were anaerobic ancestors of cyanobacteria ("procyanobacteria") that conducted anoxygenic photosynthesis using a photosystem I-like reaction center, somewhat similar to the heterocysts of modern filamentous cyanobacteria. From procyanobacteria, photosynthesis spread to other phyla by way of lateral gene transfer.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- *School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico–Chemical Biology, Moscow State University, Moscow 119899, Russia
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Sergey L. Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Alexis Dufresne
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Frédéric Partensky
- Station Biologique, Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Université Paris 6, BP74, F-29682 Roscoff Cedex, France
| | - Henry Burd
- Integrated Genomics, Inc., Chicago, IL 60612; and
| | | | - Robert Haselkorn
- **Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
22
|
Sadekar S, Raymond J, Blankenship RE. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 2006; 23:2001-7. [PMID: 16887904 DOI: 10.1093/molbev/msl079] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photosynthesis was established on Earth more than 3 billion years ago. All available evidences suggest that the earliest photosynthetic organisms were anoxygenic and that oxygen-evolving photosynthesis is a more recent development. The reaction center complexes that form the heart of the energy storage process are integral membrane pigment proteins that span the membrane in vectorial fashion to carry out electron transfer. The origin and extent of distribution of these proteins has been perplexing from a phylogenetic point of view mostly because of extreme sequence divergence. A series of integral membrane proteins of known structure and varying degrees of sequence identity have been compared using combinatorial extension-Monte Carlo methods. The proteins include photosynthetic reaction centers from proteobacteria and cyanobacterial photosystems I and II, as well as cytochrome oxidase, bacteriorhodopsin, and cytochrome b. The reaction center complexes show a remarkable conservation of the core structure of 5 transmembrane helices, strongly implying common ancestry, even though the residual sequence identity is less than 10%, whereas the other proteins have structures that are unrelated. A relationship of sequence with structure was derived from the reaction center structures; with characteristic decay length of 1.6 A. Phylogenetic trees derived from the structural alignments give insights into the earliest photosynthetic reaction center, strongly suggesting that it was a homodimeric complex that did not evolve oxygen.
Collapse
Affiliation(s)
- Sumedha Sadekar
- Computational Biosciences Program, Arizona State University, USA
| | | | | |
Collapse
|
23
|
Cavalier-Smith T. Rooting the tree of life by transition analyses. Biol Direct 2006; 1:19. [PMID: 16834776 PMCID: PMC1586193 DOI: 10.1186/1745-6150-1-19] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite great advances in clarifying the family tree of life, it is still not agreed where its root is or what properties the most ancient cells possessed--the most difficult problems in phylogeny. Protein paralogue trees can theoretically place the root, but are contradictory because of tree-reconstruction artefacts or poor resolution; ribosome-related and DNA-handling enzymes suggested one between neomura (eukaryotes plus archaebacteria) and eubacteria, whereas metabolic enzymes often place it within eubacteria but in contradictory places. Palaeontology shows that eubacteria are much more ancient than eukaryotes, and, together with phylogenetic evidence that archaebacteria are sisters not ancestral to eukaryotes, implies that the root is not within the neomura. Transition analysis, involving comparative/developmental and selective arguments, can polarize major transitions and thereby systematically exclude the root from major clades possessing derived characters and thus locate it; previously the 20 shared neomuran characters were thus argued to be derived, but whether the root was within eubacteria or between them and archaebacteria remained controversial. RESULTS I analyze 13 major transitions within eubacteria, showing how they can all be congruently polarized. I infer the first fully resolved prokaryote tree, with a basal stem comprising the new infrakingdom Glidobacteria (Chlorobacteria, Hadobacteria, Cyanobacteria), which is entirely non-flagellate and probably ancestrally had gliding motility, and two derived branches (Gracilicutes and Unibacteria/Eurybacteria) that diverged immediately following the origin of flagella. Proteasome evolution shows that the universal root is outside a clade comprising neomura and Actinomycetales (proteates), and thus lies within other eubacteria, contrary to a widespread assumption that it is between eubacteria and neomura. Cell wall and flagellar evolution independently locate the root outside Posibacteria (Actinobacteria and Endobacteria), and thus among negibacteria with two membranes. Posibacteria are derived from Eurybacteria and ancestral to neomura. RNA polymerase and other insertions strongly favour the monophyly of Gracilicutes (Proteobacteria, Planctobacteria, Sphingobacteria, Spirochaetes). Evolution of the negibacterial outer membrane places the root within Eobacteria (Hadobacteria and Chlorobacteria, both primitively without lipopolysaccharide): as all phyla possessing the outer membrane beta-barrel protein Omp85 are highly probably derived, the root lies between them and Chlorobacteria, the only negibacteria without Omp85, or possibly within Chlorobacteria. CONCLUSION Chlorobacteria are probably the oldest and Archaebacteria the youngest bacteria, with Posibacteria of intermediate age, requiring radical reassessment of dominant views of bacterial evolution. The last ancestor of all life was a eubacterium with acyl-ester membrane lipids, large genome, murein peptidoglycan walls, and fully developed eubacterial molecular biology and cell division. It was a non-flagellate negibacterium with two membranes, probably a photosynthetic green non-sulphur bacterium with relatively primitive secretory machinery, not a heterotrophic posibacterium with one membrane.
Collapse
|
24
|
Iverson TM. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 2006; 10:91-100. [PMID: 16504567 DOI: 10.1016/j.cbpa.2006.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
Oxygenic photosynthesis is one example of the many bioenergetic pathways utilized by different organisms to harvest energy from the environment. These pathways revolve around a theme of coupling oxidation-reduction reactions to the formation of membrane potential and subsequent ATP synthesis. Although the basic principles underlying bioenergetics are universally conserved, the constituents of the bioenergetic pathways in different organisms have evolved unique aspects to fill an evolutionary niche. Three-dimensional structures of all of the membrane-spanning components of the electron-transfer chain of oxygenic photosynthesis have revealed those unique aspects of this fascinating process, including the unique metallocofactor for catalysis, the determinants of the uniquely high voltage cofactor, and the numerous photoprotective mechanisms that guard against radical damage.
Collapse
Affiliation(s)
- Tina M Iverson
- Department of Pharmacology, Center for Structural Biology and Vanderbilt Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
25
|
Abstract
Division of ancestral prokaryotic pragenome into two circular double-stranded DNA molecules by genetic recombination, is a base for future separate evolution of nuclear and mitochondrial gene compartment. This suggests monophyletic origin of both, mitochondrion and nucleus. Presumed organism which genome undergoes genetic recombination has to be searched among an aerobic, oxygen nonproducing, archaeon with no rigid cell wall, but a plasma membrane. Plastid evolves from an aerobic, oxygen producing protoeukaryote, after mitoplastid genome duplication and subsequent functional segregation.
Collapse
|