1
|
Caña-Bozada VH, Dawoud AAZ, Ramos-de la Cruz I, Flores-Méndez LC, Barrera-Redondo J, Briones-Mendoza J, Yañez-Guerra LA. Global analysis of ligand-gated ion channel conservation across Platyhelminthes. Gen Comp Endocrinol 2025; 366:114718. [PMID: 40157577 DOI: 10.1016/j.ygcen.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Ligand-gated ion channels (LGICs) are critical for neurotransmission, mediating responses to neurotransmitters and hormones, and influencing diverse physiological processes. This study identifies and classifies LGICs across Platyhelminthes, with a particular focus on parasitic neodermatans, which impact human and animal health. Using bioinformatics tools, we analyzed LGICs from 41 neodermatan species and expanded our investigation to encompass vertebrates, other invertebrates, and non-bilaterians to trace LGIC evolutionary pathways across Metazoa. We identified 2,269 putative LGICs within neodermatan species, which we classified into the cys-loop, ASIC/Deg/ENaC, iGluR, and P2X families. Our phylogenetic and clustering analyses reveal lineage-specific patterns with distinct evolutionary trajectories for each LGIC family in neodermatans compared to free-living platyhelminths and other taxa. Notably, the ASIC/Deg/ENaC family displayed the greatest degree of neodermatan-specific divergence, while cys-loop and P2X families were more conserved across taxa. To provide insight into their potential physiological roles, we analyzed LGIC expression patterns in Schistosoma mansoni, revealing widespread expression across neuronal and muscle cell types. The distribution of acid-sensing ion channels (ASICs) in both neurons and muscles suggests a role in neuromuscular signalling, while the P2X receptor (Smp_333600) exhibited sex-specific expression, potentially indicating distinct functional roles in males and females. Additionally, several cys-loop acetylcholine and GABA receptors showed differential neuronal and muscle expression, highlighting their likely contributions to cholinergic and inhibitory neurotransmission. These findings underscore the relevance of LGICs in parasite physiology, particularly in neuromuscular and sensory processes, and suggest potential targets for antiparasitic interventions.
Collapse
Affiliation(s)
- Víctor Hugo Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico; Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador.
| | - Ahmed A Z Dawoud
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK
| | - Ivana Ramos-de la Cruz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico
| | - Lizeth C Flores-Méndez
- Universidad Autónoma de Occidente, Unidad Regional Mazatlán. Av. del Mar, Tellería, Mazatlán 82100 Sinaloa, Mexico
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen 72076 Tübingen, Germany
| | - Jesús Briones-Mendoza
- Carrera de Biología, Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica "Eloy Alfaro" de Manabí, Ciudadela Universitaria vía San Mateo, Manta, Ecuador
| | - Luis A Yañez-Guerra
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK; Institute for Life Sciences. University of Southampton, University Road SO17 1BJ Southampton, UK.
| |
Collapse
|
2
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Hernando G, Turani O, Rodriguez Araujo N, Bouzat C. The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophys Rev 2023; 15:733-750. [PMID: 37681094 PMCID: PMC10480131 DOI: 10.1007/s12551-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.
Collapse
Affiliation(s)
- Guillermina Hernando
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Noelia Rodriguez Araujo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
4
|
Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. J Assoc Res Otolaryngol 2023; 24:117-127. [PMID: 36648734 PMCID: PMC10121982 DOI: 10.1007/s10162-022-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.
Collapse
Affiliation(s)
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - James B Dewey
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Clark E Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Alessandro Altoè
- Caruso Department of Otolaryngology and Department of Physics and Astronomy, University of Southern California, Los Angeles, USA
| | - Carolina Abdala
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, USA
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
5
|
Elgoyhen AB. The α9α10 acetylcholine receptor: a non-neuronal nicotinic receptor. Pharmacol Res 2023; 190:106735. [PMID: 36931539 DOI: 10.1016/j.phrs.2023.106735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
6
|
Johnson H, VanHooreweghe M, Satori JA, Chan JD. Schistosomes contain divergent ligand-gated ion channels with an atypical Cys-loop motif. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000694. [PMID: 36713055 PMCID: PMC9874803 DOI: 10.17912/micropub.biology.000694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/01/1970] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Ligand-gated ion channels (LGICs) are important regulators of neuromuscular function, making them attractive antiparasitic drug targets. While roundworm LGICs are targeted by several anthelmintic classes, flatworm LGICs are less studied. Chromosome-level genome assemblies have recently been released for Schistosoma flatworm species that cause the disease schistosomiasis. These have allowed us to comprehensively predict schistosome LGICs, adding to prior annotations. Analysis of LGIC sequences revealed a clade of receptors lacking cysteines at the eponymous Cys-loop region of the channel. Since these atypical channels are divergent from mammalian LGICs, they may be promising targets to treat diseases caused by parasitic flatworms.
Collapse
Affiliation(s)
| | | | | | - John D Chan
- University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
7
|
Rodriguez Araujo N, Hernando G, Corradi J, Bouzat C. The nematode serotonin-gated chloride channel MOD-1: A novel target for anthelmintic therapy. J Biol Chem 2022; 298:102356. [PMID: 35952761 PMCID: PMC9471462 DOI: 10.1016/j.jbc.2022.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 10/29/2022] Open
Abstract
Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
8
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Jones AK, Goven D, Froger JA, Bantz A, Raymond V. The cys-loop ligand-gated ion channel gene superfamilies of the cockroaches Blattella germanica and Periplaneta americana. PEST MANAGEMENT SCIENCE 2021; 77:3787-3799. [PMID: 33347700 DOI: 10.1002/ps.6245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cockroaches are serious urban pests that can transfer disease-causing microorganisms as well as trigger allergic reactions and asthma. They are commonly managed by pesticides that act on cys-loop ligand-gated ion channels (cysLGIC). To provide further information that will enhance our understanding of how insecticides act on their molecular targets in cockroaches, we used genome and reverse transcriptase polymerase chain reaction (RT-PCR) data to characterize the cysLGIC gene superfamilies from Blattella germanica and Periplaneta americana. RESULTS The B. germanica and P. americana cysLGIC superfamilies consist of 30 and 32 subunit-encoding genes, respectively, which are the largest insect cysLGIC superfamilies characterized to date. As with other insects, the cockroaches possess ion channels predicted to be gated by acetylcholine, γ-aminobutyric acid, glutamate and histamine, as well as orthologues of the drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. The large cysLGIC superfamilies of cockroaches are a result of an expanded number of divergent nicotinic acetylcholine receptor subunits, with B. germanica and P. americana, respectively, possessing eight and ten subunit genes. Diversity of the cockroach cysLGICs is also broadened by alternative splicing and RNA A-to-I editing. Unusually, both cockroach species possess a second glutamate-gated chloride channel as well as another CG8916 subunit. CONCLUSION These findings on B. germanica and P. americana enhance our understanding of the evolution of the insect cysLGIC superfamily and provide a useful basis for the study of their function, the detection and management of insecticide resistance, and for the development of improved pesticides with greater specificity towards these major pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Delphine Goven
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Josy-Anne Froger
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Alexandre Bantz
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| | - Valerie Raymond
- Laboratoire « Signalisation Fonctionnelle des Canaux Ioniques et Récepteurs » (SiFCIR), UPRES-EA2647 USC INRAE 1330, SFR 4207 QUASAV, UFR Sciences, Université d'Angers, Angers, France
| |
Collapse
|
11
|
Marcovich I, Moglie MJ, Carpaneto Freixas AE, Trigila AP, Franchini LF, Plazas PV, Lipovsek M, Elgoyhen AB. Distinct Evolutionary Trajectories of Neuronal and Hair Cell Nicotinic Acetylcholine Receptors. Mol Biol Evol 2021; 37:1070-1089. [PMID: 31821508 PMCID: PMC7086180 DOI: 10.1093/molbev/msz290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels with distinct roles in synaptic transmission at the neuromuscular junction, the central and peripheral nervous system, and the inner ear. Remarkably, the complement of nAChR subunits has been highly conserved along vertebrate phylogeny. To ask whether the different subtypes of receptors underwent different evolutionary trajectories, we performed a comprehensive analysis of vertebrate nAChRs coding sequences, mouse single-cell expression patterns, and comparative functional properties of receptors from three representative tetrapod species. We found significant differences between hair cell and neuronal receptors that were most likely shaped by the differences in coexpression patterns and coassembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater coexpression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow coexpression pattern, and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.
Collapse
Affiliation(s)
- Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo J Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín E Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centre for Developmental Neurobiology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Zahran F, Ezz El-Din HM, Shehata MAS. Study on the effect of an ion channel inhibitor "Fluralaner" on Echinococcus granulosus protoscolices and metacestode layers in vitro. J Parasit Dis 2020; 44:411-419. [PMID: 32508416 DOI: 10.1007/s12639-020-01224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/12/2020] [Indexed: 02/05/2023] Open
Abstract
Hydatid disease has a great impact on public health, causing high morbidity and mortality. Main lines of treatment include surgery, which mostly requires the installation of a scolicidal agent into hydatid cysts to prevent dissemination. Alternatively, medical treatment involves the use of benzimidazole drugs; however, the results are not satisfactory, and new drug compounds are urgently needed. Fluralaner is a potent inhibitor of GABA-gated chloride channels and L-glutamate-gated chloride channels (GluCls) providing immediate and persistent flea, tick and mite control in dogs after a single oral dose. Researches previously identified different genes encoding ion channels in Echinococcus granulosus, making ion channel inhibitors a promising target for treating hydatid disease. Thus, the present study aimed to evaluate the effect of fluralaner on protoscolices and metacestode layers. Parasite materials (Protoscolices, Metacestodes layers) were exposed to different concentrations of the drug ranging from "12.5-100 ug/ml" and examined for viability after 1, 6 and 24 h. Morphological and ultrastructural alterations were recorded by both light and electron microscopies. Immunohistochemical staining confirmed caspase-3 activation as an indicator of apoptosis- induced therapy. The treated protoscolices and metacestode layers showed loss of the viability, the formation of vacuoles and lipid droplets, separation of the germinal layer, and damage in the laminated layer; apoptosis was prominent after treatment. These findings revealed that fluralaner has a potent scolicidal activity and suggested its therapeutic potential against hydatid disease. Further evaluations for animals and human use in the treatment and prevention of hydatid disease are needed.
Collapse
Affiliation(s)
- Fatima Zahran
- Faculty of Medicine, Ain-Shams University, Ramsis St., Abbassia, Cairo, 11591 Egypt
| | | | | |
Collapse
|
13
|
Redhai S, Pilgrim C, Gaspar P, Giesen LV, Lopes T, Riabinina O, Grenier T, Milona A, Chanana B, Swadling JB, Wang YF, Dahalan F, Yuan M, Wilsch-Brauninger M, Lin WH, Dennison N, Capriotti P, Lawniczak MKN, Baines RA, Warnecke T, Windbichler N, Leulier F, Bellono NW, Miguel-Aliaga I. An intestinal zinc sensor regulates food intake and developmental growth. Nature 2020; 580:263-268. [PMID: 32269334 PMCID: PMC8833092 DOI: 10.1038/s41586-020-2111-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Clare Pilgrim
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Tatiana Lopes
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Olena Riabinina
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Bhavna Chanana
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
| | - Farah Dahalan
- Department of Life Sciences, Imperial College London, London, UK
- Malaria Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nathan Dennison
- Department of Life Sciences, Imperial College London, London, UK
| | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
14
|
Robertson RM, Dawson-Scully KD, Andrew RD. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J Neurophysiol 2020; 123:885-895. [PMID: 32023142 PMCID: PMC7099469 DOI: 10.1152/jn.00724.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- R Meldrum Robertson
- Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ken D Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - R David Andrew
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Feingold D, Knogler L, Starc T, Drapeau P, O'Donnell MJ, Nilson LA, Dent JA. secCl is a cys-loop ion channel necessary for the chloride conductance that mediates hormone-induced fluid secretion in Drosophila. Sci Rep 2019; 9:7464. [PMID: 31097722 PMCID: PMC6522505 DOI: 10.1038/s41598-019-42849-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Organisms use circulating diuretic hormones to control water balance (osmolarity), thereby avoiding dehydration and managing excretion of waste products. The hormones act through G-protein-coupled receptors to activate second messenger systems that in turn control the permeability of secretory epithelia to ions like chloride. In insects, the chloride channel mediating the effects of diuretic hormones was unknown. Surprisingly, we find a pentameric, cys-loop chloride channel, a type of channel normally associated with neurotransmission, mediating hormone-induced transepithelial chloride conductance. This discovery is important because: 1) it describes an unexpected role for pentameric receptors in the membrane permeability of secretory epithelial cells, and 2) it suggests that neurotransmitter-gated ion channels may have evolved from channels involved in secretion.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Laura Knogler
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Str. 29, München, Bau 601D-80802, Germany
| | - Pierre Drapeau
- Department of Neurosciences, Research Centre of the University of Montréal Hospital Centre, Montréal, Québec, Canada
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Laura A Nilson
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr. Penfield, Montréal, Québec, H3A 1B1, Canada.
| |
Collapse
|
16
|
Preza M, Montagne J, Costábile A, Iriarte A, Castillo E, Koziol U. Analysis of classical neurotransmitter markers in tapeworms: Evidence for extensive loss of neurotransmitter pathways. Int J Parasitol 2018; 48:979-992. [DOI: 10.1016/j.ijpara.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
|
17
|
Liu H, French AS, Torkkeli PH. Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei. J Comp Neurol 2016; 525:1139-1154. [PMID: 27650259 DOI: 10.1002/cne.24122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/30/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
The central and peripheral nervous system transcriptomes of the spider Cupiennius salei have 15 Cys-loop receptor subunits and an acetylcholine-binding protein (AChBP). Twelve subunits are predicted to form anion channels gated by γ-aminobutyric acid (GABA), glutamate, histamine, or changes in pH, and three are putative ACh-gated cation channels. Spiders have a variety of mechanosensilla and proprioceptive organs that are innervated by efferents in their peripherally located parts, and efferents also innervate muscle fibers. We investigated Cys-loop gene expression in muscle tissue by qPCR and localized this expression in mechanosensilla via in situ hybridization. The cuticular mechanosensory neurons had only CsGABArdl and CspHCl2 subunits, whereas the muscle tissue expressed a wider variety of subunits, especially CsGABAgrd, CsGABAA β, CsGluCl1 and CspHCl, but very low levels of the CsGABArdl or CsnACh subunits. An nACh non-α subunit was expressed in a group of unidentified cells in the hypodermis and at low level in the muscle tissue, but the physiological function of this subunit is unknown. The CsnAChα subunit was not expressed in sensory neurons and was expressed at extremely low level in the muscle tissue. None of the probes gave signals in proprioceptive joint receptors, suggesting that efferent innervation to this sense organ employs other receptor types. CsAChBP and a glia-specific homeodomain CsREPO were both expressed in glial cells that surround sensory neurons and also in muscle tissue, probably around the nerve endings of the neuromuscular junction. These locations have large numbers of synapses, suggesting that AChBP may have a function in modulating synaptic transmission. J. Comp. Neurol. 525:1139-1154, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
18
|
Immunochemical Localization of GABA A Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa). Neurochem Res 2016; 41:2914-2922. [PMID: 27450241 DOI: 10.1007/s11064-016-2010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABAA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABAA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABAA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.
Collapse
|
19
|
Duguet TB, Charvet CL, Forrester SG, Wever CM, Dent JA, Neveu C, Beech RN. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors. PLoS Negl Trop Dis 2016; 10:e0004826. [PMID: 27415016 PMCID: PMC4945070 DOI: 10.1371/journal.pntd.0004826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic nematodes and this work provides a foundation for understanding the broader context of changing anthelmintic drug targets across the parasitic nematodes.
Collapse
Affiliation(s)
- Thomas B. Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Claude L. Charvet
- INRA, UMR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie Santé Publique, Tours, France
| | - Sean G. Forrester
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Claudia M. Wever
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Joseph A. Dent
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Centre for Host-Parasite Interactions, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie Santé Publique, Tours, France
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Centre for Host-Parasite Interactions, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:2003-12. [PMID: 27172217 PMCID: PMC4938653 DOI: 10.1534/g3.116.029546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets.
Collapse
|
21
|
Feingold D, Starc T, O'Donnell MJ, Nilson L, Dent JA. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. ACTA ACUST UNITED AC 2016; 219:2629-38. [PMID: 27358471 DOI: 10.1242/jeb.141069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) constitute a large protein superfamily in metazoa whose role as neurotransmitter receptors mediating rapid, ionotropic synaptic transmission has been extensively studied. Although the vast majority of pLGICs appear to be neurotransmitter receptors, the identification of pLGICs in non-neuronal tissues and homologous pLGIC-like proteins in prokaryotes points to biological functions, possibly ancestral, that are independent of neuronal signalling. Here, we report the molecular and physiological characterization of a highly divergent, orphan pLGIC subunit encoded by the pHCl-2 (CG11340) gene, in Drosophila melanogaster We show that pHCl-2 forms a channel that is insensitive to a wide array of neurotransmitters, but is instead gated by changes in extracellular pH. pHCl-2 is expressed in the Malpighian tubules, which are non-innervated renal-type secretory tissues. We demonstrate that pHCl-2 is localized to the apical membrane of the epithelial principal cells of the tubules and that loss of pHCl-2 reduces urine production during diuresis. Our data implicate pHCl-2 as an important source of chloride conductance required for proper urine production, highlighting a novel role for pLGICs in epithelial tissues regulating fluid secretion and osmotic homeostasis.
Collapse
Affiliation(s)
- Daniel Feingold
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Tanja Starc
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, München Bau 601D-80802, Germany
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Laura Nilson
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| | - Joseph A Dent
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
22
|
Jaiteh M, Taly A, Hénin J. Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors. PLoS One 2016; 11:e0151934. [PMID: 26986966 PMCID: PMC4795631 DOI: 10.1371/journal.pone.0151934] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/27/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Mariama Jaiteh
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Wever CM, Farrington D, Dent JA. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets. PLoS One 2015; 10:e0138804. [PMID: 26393923 PMCID: PMC4578888 DOI: 10.1371/journal.pone.0138804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.
Collapse
Affiliation(s)
- Claudia M. Wever
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | - Joseph A. Dent
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein. PLoS One 2015; 10:e0138068. [PMID: 26368804 PMCID: PMC4569296 DOI: 10.1371/journal.pone.0138068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular structure and pharmacology of Cys-loop receptors in beneficial species.
Collapse
|
25
|
Yoluk Ö, Lindahl E, Andersson M. Conformational gating dynamics in the GluCl anion-selective chloride channel. ACS Chem Neurosci 2015; 6:1459-67. [PMID: 25992588 DOI: 10.1021/acschemneuro.5b00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cys-loop receptors are central to propagation of signals in the nervous system. The gating of the membrane-spanning pore is triggered by structural rearrangements in the agonist-binding site, located some 50 Å away from the pore. A sequential conformational change, propagating from the ligand-binding site to the pore, has been proposed to govern gating in all Cys-loop receptors. Here, we identify structural and dynamic components of the conformational gating in the eukaryotic glutamate-gated chloride channel (GluCl) by means of molecular dynamics (MD) simulations with and without the l-glutamate agonist bound. A significant increase in pore opening and accompanying hydration is observed in the presence of glutamate. Potential of mean force calculations reveal that the barrier for ion passage drops from 15 kcal/mol to 5-10 kcal/mol with the agonist bound. This appears to be explained by agonist binding that leads to significant changes in the intersubunit hydrogen-bonding pattern, which induce a slight tilt of the extracellular domain relative to the transmembrane domain in the simulations. This rearrangement is subtle, but correspond to the direction of the quaternary twist observed as a key difference between open and closed X-ray structures. While the full reversible gating is still a much slower process, the observed structural dynamics sheds new light on the early stages of how the agonist influences the extracellular domain, how the extracellular domain interacts with the transmembrane domain, and how changes in the transmembrane domain alter the free energy of ion passage.
Collapse
Affiliation(s)
- Özge Yoluk
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Magnus Andersson
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
27
|
Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels. Sci Rep 2015; 5:8558. [PMID: 25708000 PMCID: PMC4338433 DOI: 10.1038/srep08558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling.
Collapse
|
28
|
The evolution of pentameric ligand-gated ion-channels and the changing family of anthelmintic drug targets. Parasitology 2014; 142:303-17. [PMID: 25354656 DOI: 10.1017/s003118201400170x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY Pentameric ligand-gated ion-channels rapidly transduce synaptic neurotransmitter signals to an electrical response in post-synaptic neuronal or muscle cells and control the neuromusculature of a majority of multicellular animals. A wide range of pharmaceuticals target these receptors including ethanol, nicotine, anti-depressants and other mood regulating drugs, compounds that control pain and mobility and are targeted by a majority of anthelmintic drugs used to control parasitic infection of humans and livestock. Major advances have been made in recent years to our understanding of the structure, function, activity and the profile of compounds that can activate specific receptors. It is becoming clear that these anthelmintic drug targets are not fixed, but differ in significant details from one nematode species to another. Here we review what is known about the evolution of the pentameric ligand-gated ion-channels, paying particular attention to the nematodes, how we can infer the origins of such receptors and understand the factors that determine how they change both over time and from one species to another. Using this knowledge provides a biological framework in which to understand these important drug targets and avenues to identify new receptors and aid the search for new anthelmintic drugs.
Collapse
|
29
|
Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors. PLoS One 2014; 9:e108458. [PMID: 25259865 PMCID: PMC4178172 DOI: 10.1371/journal.pone.0108458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/11/2014] [Indexed: 11/29/2022] Open
Abstract
Orthologous Cys-loop glutamate-gated chloride channels (GluClR’s) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR’s from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia receptor also explain the agonist profile seen in the glycine and GABAA-ρ receptors.
Collapse
|
30
|
Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor. Mol Biol Evol 2014; 31:3250-65. [PMID: 25193338 PMCID: PMC4245820 DOI: 10.1093/molbev/msu258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Angélica Fierro
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Paul A Fuchs
- Department of Otolaryngology, Head and Neck Surgery, and Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Lynagh T, Cromer BA, Dufour V, Laube B. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:244-55. [PMID: 25516835 PMCID: PMC4266781 DOI: 10.1016/j.ijpddr.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Flatworm and roundworm glutamate-gated chloride channels (GluCls) were compared. Several glutamate analogues activated both GluCls in the millimolar range. Quisqualate selectively activated the flatworm GluCl. Propofol and thymol inhibited both GluCls in the micromolar range. Pharmacological targeting of glutamate-gated chloride channels (GluCls) is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs against schistosomiasis, flatworm GluCls should be evaluated as potential anthelmintic targets. This study sought to identify agonists or modulators of one such GluCl, SmGluCl-2 from the parasitic flatworm Schistosoma mansoni. The effects of nine glutamate-like compounds and three monoterpenoid ion channel modulators were measured by electrophysiology at SmGluCl-2 recombinantly expressed in Xenopus laevis oocytes. For comparison with an established anthelmintic target, experiments were also performed on the AVR-14B GluCl from the parasitic roundworm Haemonchus contortus. l-Glutamate was the most potent agonist at both GluCls, but l-2-aminoadipate, d-glutamate and d-2-aminoadipate activated SmGluCl-2 (EC50 1.0 ± 0.1 mM, 2.4 ± 0.4 mM, 3.6 ± 0.7 mM, respectively) more potently than AVR-14B. Quisqualate activated only SmGluCl-2 whereas l-aspartate activated only AVR-14B GluCls. Regarding the monoterpenoids, both GluCls were inhibited by propofol, thymol and menthol, SmGluCl-2 most potently by thymol (IC50 484 ± 85 μM) and least potently by menthol (IC50 > 3 mM). Computational docking suggested that agonist and inhibitor potency is attributable to particular interactions with extracellular or membrane-spanning amino acid residues. These results reveal that flatworm GluCls are pharmacologically susceptible to numerous agonists and modulators and indicate that changes to the glutamate γ-carboxyl or to the propofol 6-isopropyl group can alter the differential pharmacology at flatworm and roundworm GluCls. This should inform the development of more potent compounds and in turn lead to novel anthelmintics.
Collapse
Key Words
- Anthelmintic
- Binding site
- ECD, extracellular domain
- GABA, γ-aminobutyric acid
- GABAAR, type A γ-aminobutyric acid receptor
- GluCl
- GluCl, glutamate-gated chloride channel
- GlyR, glycine receptor
- Propofol
- Schistosomiasis
- TMD, transmembrane domain
- Thymol
- cis-ACBD, cis-1-aminocyclobutane-1,3-dicarboxylate
- iGluR, (tetrameric) ionotropic glutamate receptor
- pLGIC, pentameric ligand-gated ion channel (or Cys-loop receptor)
Collapse
Affiliation(s)
- Timothy Lynagh
- Neurophysiology and Neurosensory Systems, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Brett A Cromer
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Vanessa Dufour
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University - MacDonald Campus, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Bodo Laube
- Neurophysiology and Neurosensory Systems, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
32
|
White SH, Carter CJ, Magoski NS. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells. J Neurophysiol 2014; 112:446-62. [DOI: 10.1152/jn.00796.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca2+ permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.
Collapse
Affiliation(s)
- Sean H. White
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Carter
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Démares F, Drouard F, Massou I, Crattelet C, Lœuillet A, Bettiol C, Raymond V, Armengaud C. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera. Pharmacol Biochem Behav 2014; 124:137-44. [PMID: 24911646 DOI: 10.1016/j.pbb.2014.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/16/2022]
Abstract
Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species.
Collapse
Affiliation(s)
- Fabien Démares
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Florian Drouard
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Cindy Crattelet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Aurore Lœuillet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Célia Bettiol
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Valérie Raymond
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES-EA2647 USC INRA 1330 SFR 4207 QUASAV, LUNAM Université d'Angers, 2 blvd Lavoisier, F-49045 Angers Cedex 01, France
| | - Catherine Armengaud
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
34
|
Akk G, Eaton M, Li P, Zheng S, Lo J, Steinbach JH. Energetic contributions to channel gating of residues in the muscle nicotinic receptor β1 subunit. PLoS One 2013; 8:e78539. [PMID: 24194945 PMCID: PMC3806828 DOI: 10.1371/journal.pone.0078539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/19/2013] [Indexed: 12/04/2022] Open
Abstract
In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Megan Eaton
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ping Li
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Steven Zheng
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joshua Lo
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joe Henry Steinbach
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
35
|
Molecular cloning and characterization of novel glutamate-gated chloride channel subunits from Schistosoma mansoni. PLoS Pathog 2013; 9:e1003586. [PMID: 24009509 PMCID: PMC3757052 DOI: 10.1371/journal.ppat.1003586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/15/2013] [Indexed: 12/28/2022] Open
Abstract
Cys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480), SmGluCl-2 (Smp_015630) and SmGluCl-3 (Smp_104890). A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730). Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl) that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC) in Xenopus oocytes, and shown to encode Cl−-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC50 values of 7–26 µM. Chloride selectivity was confirmed by current-voltage (I/V) relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM), indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets. Schistosomiasis is a debilitating disease caused by blood flukes in the genus Schistosoma that afflicts over 200 million people worldwide. Treatment relies almost exclusively on a single drug, praziquantel. Reports of sub-optimal efficacy of praziquantel raise concerns about the prospect of drug resistance and highlight the need to develop new schistosomicidal drugs. Neuroactive receptors are recognized targets of insecticides and anthelmintics. Likewise, neuronal receptors of schistosomes are attractive targets for drug development. Lacking a coelom and a proper circulatory system, schistosomes are thought to lack the capacity for endocrine signaling, and therefore depend entirely on neuronal modulation to control functions vital to their survival and reproduction. We characterized a novel family of glutamate-gated chloride channel (GluCl) receptors from S. mansoni that are pharmacologically and evolutionarily distinct from GluCls in nematodes, insects and snails. Our phylogenetic analyses suggest that these receptors are also widely distributed in other flukes and tapeworms. This study provides the first molecular evidence for the contribution of an inhibitory component to glutamatergic signaling in S. mansoni. Our findings add to a growing body of evidence suggesting that glutamatergic signaling in schistosomes may be physiologically important, and could be targeted for chemotherapeutic intervention.
Collapse
|
36
|
Camicia F, Herz M, Prada L, Kamenetzky L, Simonetta S, Cucher M, Bianchi J, Fernández C, Brehm K, Rosenzvit M. The nervous and prenervous roles of serotonin in Echinococcus spp. Int J Parasitol 2013; 43:647-59. [DOI: 10.1016/j.ijpara.2013.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022]
|
37
|
Beech RN, Callanan MK, Rao VTS, Dawe GB, Forrester SG. Characterization of cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free living nematodes. Parasitol Int 2013; 62:599-605. [PMID: 23602737 DOI: 10.1016/j.parint.2013.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 01/23/2023]
Abstract
We have isolated two genes, Hco-lgc-53 and Hco-mod-1, from the parasitic nematode Haemonchus contortus, which are orthologs of previously characterized genes that encode dopamine and serotonin-gated chloride channels, respectively, in Caenorhabditis elegans. A search of transcriptome data for the filarial nematode parasites Loa loa, Brugia malayi, and Wucheria bancrofti revealed predicted coding sequences for orthologs of acetylcholine, serotonin and dopamine-gated chloride channels, which correspond to the C. elegans clades acc-1, mod-1 and ggr-3, respectively. Genome data for the more distantly related nematode parasite, Trichinella spiralis, contain genes predicted to encode members of the acc-1 clade only, but all three clades were absent from the trematode Schistosoma mansoni. Analysis of the ratio of non-synonymous to synonymous substitutions (ω) for receptor subunit sequences revealed strong selective constraint over the entire protein, consistent with the known highly conserved 3D structure of cys-loop receptors. This constraint was significantly greater for binding loop residues that are predicted to contact bound ligand and residues of the transmembrane domains. The substitution rate for ligand binding residues was significantly higher for branches leading to the acc-1 and mod-1 clades, where the convergent evolution for binding acetylcholine and serotonin, respectively, is thought to have occurred. Homology models of both Hco-MOD-1 and Hco-LGC-53 channels revealed the presence of binding structures typical of the cys-loop receptor family, including the presence of an aromatic box that is important for the formation of the binding pocket. Both receptors contain a tryptophan in loop C that appears to be a key residue important for the binding of amines to ligand-gated chloride channels. As additional ligand-gated chloride-channel sequences become available for a wider range of species the combination of molecular modeling and analysis of sequence evolution should provide an effective tool to understand the wide diversity of neurotransmitters that bind to this unique group of receptors.
Collapse
Affiliation(s)
- Robin N Beech
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1H 7K4, Canada
| | | | | | | | | |
Collapse
|
38
|
Muralidharan M, Buss K, Larrimore KE, Segerson NA, Kannan L, Mor TS. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. PLANT MOLECULAR BIOLOGY 2013; 81:565-76. [PMID: 23430565 PMCID: PMC3769184 DOI: 10.1007/s11103-013-0021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/01/2013] [Indexed: 05/09/2023]
Abstract
Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family.
Collapse
|
39
|
Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, Van Leeuwen T, Vontas J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:455-465. [PMID: 22465149 DOI: 10.1016/j.ibmb.2012.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/27/2023]
Abstract
The cys-loop ligand-gated ion channel (cysLGIC) super family of Tetranychus urticae, the two-spotted spider mite, represents the largest arthropod cysLGIC super family described to date and the first characterised one within the group of chelicerates. Genome annotation, phylogenetic analysis and comparison of the cysLGIC subunits with their counterparts in insects reveals that the T. urticae genome encodes for a high number of glutamate- and histamine-gated chloride channel genes (GluCl and HisCl) compared to insects. Three orthologues of the insect γ-aminobutyric acid (GABA)-gated chloride channel gene Rdl were detected. Other cysLGIC groups, such as the nAChR subunits, are more conserved and have clear insect orthologues. Members of cysLGIC family mediate endogenous chemical neurotransmission and they are prime targets of insecticides. Implications for toxicology associated with the identity and specific features of T. urticae family members are discussed. We further reveal the accumulation of known and novel mutations in different GluCl channel subunits (Tu_GluCl1 and Tu_GluCl3) associated with abamectin resistance in T. urticae, and provide genetic evidence for their causality. Our study provides useful toxicological insights for the exploration of the T. urticae cysLGIC subunits as putative molecular targets for current and future chemical control strategies.
Collapse
Affiliation(s)
- W Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied, Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Histamine-gated ion channels in mammals? Biochem Pharmacol 2012; 83:1127-35. [DOI: 10.1016/j.bcp.2011.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 01/29/2023]
|
41
|
Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor. Proc Natl Acad Sci U S A 2012; 109:4308-13. [PMID: 22371598 DOI: 10.1073/pnas.1115488109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa(2+)/pMonovalents ∼10) Ca(2+) permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4β2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and β2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca(2+) permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic-hair cell synapse. In addition, they suggest that high Ca(2+) permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity.
Collapse
|
42
|
Thany SH, Tricoire-Leignel H. Emerging Pharmacological Properties of Cholinergic Synaptic Transmission: Comparison between Mammalian and Insect Synaptic and Extrasynaptic Nicotinic Receptors. Curr Neuropharmacol 2011; 9:706-14. [PMID: 22654728 PMCID: PMC3263464 DOI: 10.2174/157015911798376343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/02/2010] [Accepted: 07/21/2010] [Indexed: 12/03/2022] Open
Abstract
Acetylcholine (ACh) is probably the oldest signalling neurotransmitter which appeared in evolution before the nervous system. It is present in bacteria, algae, protozoa and plants. In insects and mammals it is involved in cell-to-cell communications in various neuronal and non-neuronal tissues. The discovery of nicotinic acetylcholine receptors (nAChRs) as the main receptors involved in rapid cholinergic neurotransmission has helped to understand the role of ACh at synaptic level. Recently, several lines of evidence have indicated that extrasynaptically expressed nAChRs display distinct pharmacological properties from the ones expressed at synaptic level. The role of both nAChRs at insect extrasynaptic and/or synaptic levels has been underestimated due to the lack of pharmacological tools to identify different nicotinic receptor subtypes. In the present review, we summarize recent electrophysiological and pharmacological studies on the extrasynaptic and synaptic differences between insect and mammalian nAChR subtypes and we discuss on the pharmacological impact of several drugs such as neonicotinoid insecticides targeting these receptors. In fact, nAChRs are involved in a wide range of pathophysiological processes such as epilepsy, pain and a wide range of neurodegenerative and psychiatric disorders. In addition, they are the target sites of neonicotinoid insecticides which are known to act as nicotinic agonists causing severe poisoning in insects and mammals.
Collapse
Affiliation(s)
- Steeve H Thany
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC INRA 2023, Université d’Angers, UFR Sciences. 2 Bd Lavoisier, 49045 Angers cedex, France
| | | |
Collapse
|
43
|
Wolstenholme AJ. Ion channels and receptor as targets for the control of parasitic nematodes. Int J Parasitol Drugs Drug Resist 2011; 1:2-13. [PMID: 24533259 PMCID: PMC3898135 DOI: 10.1016/j.ijpddr.2011.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 01/19/2023]
Abstract
Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds.
Collapse
Affiliation(s)
- Adrian J. Wolstenholme
- Dept. of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Dupuis JP, Gauthier M, Raymond-Delpech V. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 2011; 106:1604-13. [DOI: 10.1152/jn.00126.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetylcholine (ACh) is the main excitatory neurotransmitter of the insect brain, where nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee Apis mellifera, nAChRs are expressed in diverse structures including the primary olfactory centers of the brain, the antennal lobes (ALs) and the mushroom bodies (MBs), where they participate in olfactory information processing. To understand the nature and properties of the nAChRs involved in these processes, we performed a pharmacological and molecular characterization of nAChRs on cultured Kenyon cells of the MBs, using whole cell patch-clamp recordings combined with single-cell RT-PCR. In all cells, applications of ACh as well as nicotinic agonists such as nicotine and imidacloprid induced inward currents with fast desensitization. These currents were fully blocked by saturating doses of the antagonists α-bungarotoxin (α-BGT), dihydroxy-β-erythroidine (DHE), and methyllycaconitine (MLA) (MLA ≥ α-BGT ≥ DHE). Molecular analysis of ACh-responding cells revealed that of the 11 nicotinic receptor subunits encoded within the honeybee genome, α2, α8, and β1 subunits were expressed in adult Kenyon cells. Comparison with the expression pattern of adult AL cells revealed the supplementary presence of subunit α7, which could be responsible for the kinetic and pharmacological differences observed when comparing ACh-induced currents from AL and Kenyon cells. Together, our data demonstrate the existence of functional nAChRs on adult MB Kenyon cells that differ from nAChRs on AL cells in both their molecular composition and pharmacological properties, suggesting that changing receptor subsets could mediate different processing functions depending on the brain structure within the olfactory pathway.
Collapse
Affiliation(s)
- Julien Pierre Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Monique Gauthier
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| | - Valérie Raymond-Delpech
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France
| |
Collapse
|
45
|
Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 2011; 333:1292-6. [PMID: 21885782 PMCID: PMC3210548 DOI: 10.1126/science.1206606] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ionic flux mediates essential physiological and behavioral functions in defined cell populations. Cell type-specific activators of diverse ionic conductances are needed for probing these effects. We combined chemistry and protein engineering to enable the systematic creation of a toolbox of ligand-gated ion channels (LGICs) with orthogonal pharmacologic selectivity and divergent functional properties. The LGICs and their small-molecule effectors were able to activate a range of ionic conductances in genetically specified cell types. LGICs constructed for neuronal perturbation could be used to selectively manipulate neuron activity in mammalian brains in vivo. The diversity of ion channel tools accessible from this approach will be useful for examining the relationship between neuronal activity and animal behavior, as well as for cell biological and physiological applications requiring chemical control of ion conductance.
Collapse
MESH Headings
- Animals
- Benzamides/chemistry
- Benzamides/metabolism
- Benzamides/pharmacology
- Brain/cytology
- Brain/physiology
- Bridged Bicyclo Compounds/chemistry
- Bridged Bicyclo Compounds/metabolism
- Bridged Bicyclo Compounds/pharmacology
- Feeding Behavior
- Female
- HEK293 Cells
- Humans
- Ion Channel Gating
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/genetics
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mutagenesis
- Neurons/physiology
- Patch-Clamp Techniques
- Protein Binding
- Protein Engineering
- Protein Structure, Tertiary
- Quinuclidines/chemistry
- Quinuclidines/metabolism
- Quinuclidines/pharmacology
- Receptors, Glycine/genetics
- Receptors, Glycine/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Small Molecule Libraries
- Stereoisomerism
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
| | | | | | - Helen H. Su
- Janelia Farm Research Campus, HHMI, 19700 Helix Dr. Ashburn, VA 20147 USA
| | - Loren L. Looger
- Janelia Farm Research Campus, HHMI, 19700 Helix Dr. Ashburn, VA 20147 USA
| | - Scott M. Sternson
- Janelia Farm Research Campus, HHMI, 19700 Helix Dr. Ashburn, VA 20147 USA
| |
Collapse
|
46
|
The efferent medial olivocochlear-hair cell synapse. ACTA ACUST UNITED AC 2011; 106:47-56. [PMID: 21762779 DOI: 10.1016/j.jphysparis.2011.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
Abstract
Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse.
Collapse
|
47
|
Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology. Biotechnol Adv 2011; 29:457-67. [PMID: 21620946 DOI: 10.1016/j.biotechadv.2011.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
Abstract
Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold.
Collapse
|
48
|
Accardi MV, Forrester SG. The Haemonchus contortus UNC-49B subunit possesses the residues required for GABA sensitivity in homomeric and heteromeric channels. Mol Biochem Parasitol 2011; 178:15-22. [PMID: 21524670 DOI: 10.1016/j.molbiopara.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022]
Abstract
Hco-UNC-49 is a GABA receptor from the parasitic nematode Haemonchus contortus that has a relatively low overall sequence similarity to vertebrate GABA receptors but is very similar to the UNC-49 receptor found in the free living nematode Caenorhabditis elegans. While the nematode receptors do share >80% sequence similarity they exhibit different sensitivities to GABA. In addition, the UNC-49C subunit appears to be a positive modulator of GABA sensitivity in the H. contortus heteromeric channel, but is a negative modulator in the C. elegans heteromeric channel. The cause(s) of these differences is currently unknown since the structural elements essential for GABA sensitivity in nematode receptors have been largely unexplored. Thus, the overall aim of this study was to investigate the residues that are important for UNC-49 receptor sensitivity through the use of homology modeling, site-directed mutagenesis, and two-electrode voltage clamp. This study revealed that Met(170) in Loop B of the GABA binding-site may partially account for the observed differences in GABA receptor sensitivity between the nematode species. Residues in Loops A-D that have been reported to form the GABA binding pocket in mammalian receptors, including those forming the conserved 'aromatic box', also appear to play analogous roles in Hco-UNC-49. In addition, the two mutations that produced the most significant reduction in GABA sensitivity were R66S and Y166S. Homology modeling indicates that these two residues share a hydrogen bond and are positioned close to the carboxyl end of the GABA molecule. However, of residues examined in this study, only those on the Hco-UNC-49B subunit and not its subunit partner, Hco-UNC-49C, appear important for GABA sensitivity. Overall, results from this study suggest that the binding site of the UNC-49 heteromeric GABA receptor exhibits some differences compared to classical vertebrate GABA(A) receptors.
Collapse
Affiliation(s)
- Michael V Accardi
- University of Ontario Institute of Technology, Faculty of Science, Oshawa, ON, Canada
| | | |
Collapse
|
49
|
Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011; 63:243-67. [PMID: 21245208 DOI: 10.1124/pr.110.002717] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). The type A GABA receptor (GABA(A)R) system is the primary pharmacological target for many drugs used in clinical anesthesia. The α1, β2, and γ2 subunit-containing GABA(A)Rs located in the various parts of CNS are thought to be involved in versatile effects caused by inhaled anesthetics and classic benzodiazepines (BZD), both of which are widely used in clinical anesthesiology. During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic GABA(A)Rs has coincided with evidence showing that these receptors are highly sensitive to the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic inhibition seems to be preferentially increased in regions shown to be important in controlling memory, awareness, and sleep. This review focuses on the physiology of the GABA(A)Rs and the pharmacological properties of clinically used BZDs. Although classic BZDs are widely used in anesthesiological practice, there is a constant need for new drugs with more favorable pharmacokinetic and pharmacodynamic effects and fewer side effects. New hypnotics are currently developed, and promising results for one of these, the GABA(A)R agonist remimazolam, have recently been published.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
50
|
Yu LL, Cui YJ, Lang GJ, Zhang MY, Zhang CX. The ionotropic γ-aminobutyric acid receptor gene family of the silkworm, Bombyx mori. Genome 2011; 53:688-97. [PMID: 20924418 DOI: 10.1139/g10-056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
γ-Aminobutyric acid (GABA) is a very important inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. GABA receptors (GABARs) are known to be the molecular targets of a class of insecticides. Members of the GABAR gene family of the silkworm, Bombyx mori, a model insect of Lepidoptera, have been identified and characterized in this study. All putative silkworm GABAR cDNAs were cloned using the reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Bombyx mori appears to have the largest insect GABAR gene family known to date, including three RDL, one LCCH3, and one GRD subunit. The silkworm RDL1 gene has RNA-editing sites, and the RDL1 and RDL3 genes possess alternative splicing. These mRNA modifications enhance the diversity of the silkworm's GABAR gene family. In addition, truncated transcripts were found for the RDL1 and LCCH3 genes. In particular, the three RDL subunits may have arisen from two duplication events.
Collapse
Affiliation(s)
- Lin-Lin Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, 310029, China
| | | | | | | | | |
Collapse
|