1
|
De Novo Assembly and Characterization of the Transcriptome of an Omnivorous Camel Cricket ( Tachycines meditationis). Int J Mol Sci 2023; 24:ijms24044005. [PMID: 36835417 PMCID: PMC9966759 DOI: 10.3390/ijms24044005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Tachycines meditationis (Orthoptera: Rhaphidophoridae: Tachycines) is a widely distributed insect in eastern Asia. This species is common in urban environments, and its unique omnivorous diet may contribute to its success in various habitats. However, molecular studies on the species are scarce. Here, we obtained the first transcriptome sequence of T. meditationis and performed preliminary analyses to test whether the evolution of coding sequences fits the expectations based on the species' ecology. We retrieved 476,495 effective transcripts and annotated 46,593 coding sequences (CDS). We analysed the codon usage and found that directional mutation pressure was the leading cause of codon usage bias in this species. This genome-wide relaxed codon usage pattern in T. meditationis is surprising, given the potentially large population size of this species. Moreover, despite the omnivorous diet, the chemosensory genes of this species do not exhibit codon usage deviating significantly from the genome-level pattern. They also do not seem to experience more gene family expansion than other cave cricket species do. A thorough search for rapidly evolved genes using the dN/dS value showed that genes associated with substance synthesis and metabolic pathways, such as retinol metabolism, aminoacyl-tRNA biosynthesis, and fatty acid metabolism, underwent species-specific positive selection. While some results seem to contradict the species ecology, our transcriptome assembly provides a valuable molecular resource for future studies on camel cricket evolution and molecular genetics for feeding ecology in insects, in general.
Collapse
|
2
|
Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution. Genetics 2015; 200:873-90. [PMID: 25948563 DOI: 10.1534/genetics.115.177386] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/28/2015] [Indexed: 01/07/2023] Open
Abstract
Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary. The methods we evaluated include parsimony and likelihood using the single best reconstruction (SBR), averaging over reconstructions weighted by the posterior probabilities (AWP), and a new method called expected Markov counting (EMC) that produces maximum-likelihood estimates of substitution counts for any branch under a nonstationary Markov model. We simulated base composition evolution on a phylogeny for six species, with different selective pressures on G+C content among lineages, and compared the counts of nucleotide substitutions recorded during simulation with the inference by different methods. We found that large systematic biases resulted from (i) the use of parsimony or likelihood with SBR, (ii) the use of a stationary model when the substitution process is nonstationary, and (iii) the use of the Hasegawa-Kishino-Yano (HKY) model, which is too simple to adequately describe the substitution process. The nonstationary general time reversible (GTR) model, used with AWP or EMC, accurately recovered the substitution counts, even in cases of complex parameter fluctuations. We discuss model complexity and the compromise between bias and variance and suggest that the new methods may be useful for studying complex patterns of nucleotide substitution in large genomic data sets.
Collapse
|
3
|
Analysis of compensatory substitution and gene evolution on the MAGEA/CSAG-palindrome of the primate X chromosomes. Comput Biol Chem 2012; 42:18-22. [PMID: 23257410 DOI: 10.1016/j.compbiolchem.2012.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 11/20/2022]
Abstract
The human X chromosome contains a large number of inverted repeat DNA palindromes. Although arbitrary substitutions destroyed the inverted repeat structure of MAGEA/CSAG-palindrome during the evolutionary process of the primates, most of the substitutions are compensatory. Using maximum parsimony, it is demonstrated that the compensatory substitutions are prone to occur between bases with similar structures on the human, chimpanzee and orangutan MAGEA/CSAG-palindromes. Furthermore, it is found that MAGEA/CSAG genes also exist in orangutan and rhesus monkey palindromes by homologous searching. This suggests that the MAGEA/CSAG-palindrome might predate the divergence of human and other primate lineages. Comparative sequence analysis of the arms and genes on the primate MAGEA/CSAG-palindromes provides possible evidence of subsequently arm to arm gene conversion. These compensatory substitutions on the MAGEA/CSAG-palindrome of the primate X chromosomes play an important role in maintaining their structural symmetry during the process of formation.
Collapse
|
4
|
Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GAB. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol Evol 2012; 4:675-82. [PMID: 22628461 PMCID: PMC5635611 DOI: 10.1093/gbe/evs052] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
GC-biased gene conversion (gBGC) is a process that tends to increase the GC content of recombining DNA over evolutionary time and is thought to explain the evolution of GC content in mammals and yeasts. Evidence for gBGC outside these two groups is growing but is still limited. Here, we analyzed 36 completely sequenced genomes representing four of the five major groups in eukaryotes (Unikonts, Excavates, Chromalveolates and Plantae). gBGC was investigated by directly comparing GC content and recombination rates in species where recombination data are available, that is, half of them. To study all species of our dataset, we used chromosome size as a proxy for recombination rate and compared it with GC content. Among the 17 species showing a significant relationship between GC content and chromosome size, 15 are consistent with the predictions of the gBGC model. Importantly, the species showing a pattern consistent with gBGC are found in all the four major groups of eukaryotes studied, which suggests that gBGC may be widespread in eukaryotes.
Collapse
Affiliation(s)
- Eugénie Pessia
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie évolutive, Villeurbanne, Cedex, France
| | | | | | | | | | | |
Collapse
|
5
|
Katzman S, Capra JA, Haussler D, Pollard KS. Ongoing GC-biased evolution is widespread in the human genome and enriched near recombination hot spots. Genome Biol Evol 2011; 3:614-26. [PMID: 21697099 PMCID: PMC3157837 DOI: 10.1093/gbe/evr058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fast evolving regions of many metazoan genomes show a bias toward substitutions that change weak (A,T) into strong (G,C) base pairs. Single-nucleotide polymorphisms (SNPs) do not share this pattern, suggesting that it results from biased fixation rather than biased mutation. Supporting this hypothesis, analyses of polymorphism in specific regions of the human genome have identified a positive correlation between weak to strong (W→S) SNPs and derived allele frequency (DAF), suggesting that SNPs become increasingly GC biased over time, especially in regions of high recombination. Using polymorphism data generated by the 1000 Genomes Project from 179 individuals from 4 human populations, we evaluated the extent and distribution of ongoing GC-biased evolution in the human genome. We quantified GC fixation bias by comparing the DAFs of W→S mutations and S→W mutations using a Mann-Whitney U test. Genome-wide, W→S SNPs have significantly higher DAFs than S→W SNPs. This pattern is widespread across the human genome but varies in magnitude along the chromosomes. We found extreme GC-biased evolution in neighborhoods of recombination hot spots, a significant correlation between GC bias and recombination rate, and an inverse correlation between GC bias and chromosome arm length. These findings demonstrate the presence of ongoing fixation bias favoring G and C alleles throughout the human genome and suggest that the bias is caused by a recombination-associated process, such as GC-biased gene conversion.
Collapse
Affiliation(s)
- Sol Katzman
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, USA
| | | | | | | |
Collapse
|
6
|
Piskol R, Stephan W. The role of the effective population size in compensatory evolution. Genome Biol Evol 2011; 3:528-38. [PMID: 21680889 PMCID: PMC3140890 DOI: 10.1093/gbe/evr057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The impact of the effective population size (Ne) on the efficacy of selection has been the focus of many theoretical and empirical studies over the recent years. Yet, the effect of Ne on evolution under epistatic fitness interactions is not well understood. In this study, we compare selective constraints at independently evolving (unpaired) and coevolving (paired) sites in orthologous transfer RNAs (tRNA molecules for vertebrate and drosophilid species pairs of different Ne. We show that patterns of nucleotide variation for the two classes of sites are explained well by Kimura's one- and two-locus models of sequence evolution under mutational pressure. We find that constraints in orthologous tRNAs increase with increasing Ne of the investigated species pair. Thereby, the effect of Ne on the efficacy of selection is stronger at unpaired sites than at paired sites. Furthermore, we identify a “core” set of tRNAs with high structural similarity to tRNAs from all major kingdoms of life and a “peripheral” set with lower similarity. We observe that tRNAs in the former set are subject to higher constraints and less prone to the effect of Ne, whereas constraints in tRNAs of the latter set show a large influence of Ne. Finally, we are able to demonstrate that constraints are relaxed in X-linked drosophilid tRNAs compared with autosomal tRNAs and suggest that Ne is responsible for this difference. The observed effects of Ne are consistent with the hypothesis that evolution of most tRNAs is governed by slightly to moderately deleterious mutations (i.e., |Nes| ≤ 5).
Collapse
Affiliation(s)
- Robert Piskol
- Section of Evolutionary Biology, Ludwig-Maximilian University, Munich, Germany.
| | | |
Collapse
|
7
|
Abstract
The accumulation of base substitutions (mutations) not subject to natural selection is the neutral mutation rate. Because this rate reflects the in vivo processes involved in maintaining the integrity of genetic information, the factors that affect the neutral mutation rate are of considerable interest. Mammals exhibit two dramatically different neutral mutation rates: the CpG mutation rate, wherein the C of most CpGs (i.e., methyl-CpG) mutate at 10-50 times that of C in any other context or of any other base. The latter mutations constitute the non-CpG rate. The high CpG rate results from the spontaneous deamination of methyl-C to T and incomplete restoration of the ensuing T:G mismatches to C:Gs. Here, we determined the neutral non-CpG mutation rate as a function of CpG content by comparing sequence divergence of thousands of pairs of neutrally evolving chimpanzee and human orthologs that differ primarily in CpG content. Both the mutation rate and the mutational spectrum (transition/transversion ratio) of non-CpG residues change in parallel as sigmoidal (logistic) functions of CpG content. As different mechanisms generate transitions and transversions, these results indicate that both mutation rate and mutational processes are contingent on the local CpG content. We consider several possible mechanisms that might explain how CpG exerts these effects.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
8
|
Eory L, Halligan DL, Keightley PD. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Mol Biol Evol 2010; 27:177-92. [PMID: 19759235 DOI: 10.1093/molbev/msp219] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein-coding sequences make up only about 1% of the mammalian genome. Much of the remaining 99% has been long assumed to be junk DNA, with little or no functional significance. Here, we show that in hominids, a group with historically low effective population sizes, all classes of noncoding DNA evolve more slowly than ancestral transposable elements and so appear to be subject to significant evolutionary constraints. Under the nearly neutral theory, we expected to see lower levels of selective constraints on most sequence types in hominids than murids, a group that is thought to have a higher effective population size. We found that this is the case for many sequence types examined, the most extreme example being 5'UTRs, for which constraint in hominids is only about one-third that of murids. Surprisingly, however, we observed higher constraints for some sequence types in hominids, notably 4-fold sites, where constraint is more than twice as high as in murids. This implies that more than about one-fifth of mutations at 4-fold sites are effectively selected against in hominids. The higher constraint at 4-fold sites in hominids suggests a more complex protein-coding gene structure than murids and indicates that methods for detecting selection on protein-coding sequences (e.g., using the d(N)/d(S) ratio), with 4-fold sites as a neutral standard, may lead to biased estimates, particularly in hominids. Our constraint estimates imply that 5.4% of nucleotide sites in the human genome are subject to effective negative selection and that there are three times as many constrained sites within noncoding sequences as within protein-coding sequences. Including coding and noncoding sites, we estimate that the genomic deleterious mutation rate U = 4.2. The mutational load predicted under a multiplicative model is therefore about 99% in hominids.
Collapse
Affiliation(s)
- Lél Eory
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
9
|
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 2009; 10:285-311. [PMID: 19630562 DOI: 10.1146/annurev-genom-082908-150001] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| | | |
Collapse
|
10
|
Qi YJ, Qiu WY. Symmetry Analysis of an X-palindrome in Human and Chimpanzee. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/04/401-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 2009; 183:31-8. [PMID: 19546316 DOI: 10.1534/genetics.109.105049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination plays a crucial role in the evolution of genomes. Among many chromosomal features, GC content is one of the most prominent variables that appear to be highly correlated with recombination. However, it is not yet clear (1) whether recombination drives GC content (as proposed, for example, in the biased gene conversion model) or the converse and (2) what are the length scales for mutual influences between GC content and recombination. Here we have reassessed these questions for the model genome Saccharomyces cerevisiae, for which the most refined recombination data are available. First, we confirmed a strong correlation between recombination rate and GC content at local scales (a few kilobases). Second, on the basis of alignments between S. cerevisiae, S. paradoxus, and S. mikatae sequences, we showed that the inferred AT/GC substitution patterns are not correlated with recombination, indicating that GC content is not driven by recombination in yeast. These results thus suggest that, in S. cerevisiae, recombination is determined either by the GC content or by a third parameter, also affecting the GC content. Third, we observed long-range correlations between GC and recombination for chromosome III (for which such correlations were reported experimentally and were the model for many structural studies). However, similar correlations were not detected in the other chromosomes, restraining thus the generality of the phenomenon. These results pave the way for further analyses aimed at the detailed untangling of drives involved in the evolutionary shaping of the yeast genome.
Collapse
|
12
|
The correlation between recombination rate and dinucleotide bias in Drosophila melanogaster. J Mol Evol 2008; 67:358-67. [PMID: 18797953 DOI: 10.1007/s00239-008-9150-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/12/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Revealing how recombination affects genomic sequence is of great significance to our understanding of genome evolution. The present paper focuses on the correlation between recombination rate and dinucleotide bias in Drosophila melanogaster genome. Our results show that the overall dinucleotide bias is positively correlated with recombination rate for genomic sequences including untranslated regions, introns, intergenic regions, and coding sequences. The correlation patterns of individual dinucleotide biases with recombination rate are presented. Possible mechanisms of interaction between recombination and dinucleotide bias are discussed. Our data indicate that there may be a genome-wide universal mechanism acting between recombination rate and dinucleotide bias, which is likely to be neighbor-dependent biased gene conversion.
Collapse
|
13
|
Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP. Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res 2008; 18:1711-23. [PMID: 18687881 DOI: 10.1101/gr.077289.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copy number variation is a dominant contributor to genomic variation and may frequently underlie an individual's variable susceptibilities to disease. Here we question our previous proposition that copy number variants (CNVs) are often retained in the human population because of their adaptive benefit. We show that genic biases of CNVs are best explained, not by positive selection, but by reduced efficiency of selection in eliminating deleterious changes from the human population. Of four CNV data sets examined, three exhibit significant increases in protein evolutionary rates. These increases appear to be attributable to the frequent coincidence of CNVs with segmental duplications (SDs) that recombine infrequently. Furthermore, human orthologs of mouse genes, which, when disrupted, result in pre- or postnatal lethality, are unusually depleted in CNVs. Together, these findings support a model of reduced purifying selection (Hill-Robertson interference) within copy number variable regions that are enriched in nonessential genes, allowing both the fixation of slightly deleterious substitutions and increased drift of CNV alleles. Additionally, all four CNV sets exhibited increased rates of interspecies chromosomal rearrangement and nucleotide substitution and an increased gene density. We observe that sequences with high G+C contents are most prone to copy number variation. In particular, frequently duplicated human SD sequence, or CNVs that are large and/or observed frequently, tend to be elevated in G+C content. In contrast, SD sequences that appear fixed in the human population lie more frequently within low G+C sequence. These findings provide an overarching view of how CNVs arise and segregate in the human population.
Collapse
Affiliation(s)
- Duc-Quang Nguyen
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Walser JC, Ponger L, Furano AV. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 2008; 18:1403-14. [PMID: 18550801 DOI: 10.1101/gr.076455.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neutral mutation rate is equal to the base substitution rate when the latter is not affected by natural selection. Differences between these rates may reveal that factors such as natural selection, linkage, or a mutator locus are affecting a given sequence. We examined the neutral base substitution rate by measuring the sequence divergence of approximately 30,000 pairs of inactive orthologous L1 retrotransposon sequences interspersed throughout the human and chimpanzee genomes. In contrast to other studies, we related ortholog divergence to the time (age) that the L1 sequences resided in the genome prior to the chimpanzee and human speciation. As expected, the younger orthologs contained more hypermutable CpGs than the older ones because of their conversion to TpGs (and CpAs). Consequently, the younger orthologs accumulated more CpG mutations than the older ones during the approximately 5 million years since the human and chimpanzee lineages separated. But during this same time, the younger orthologs also accumulated more non-CpG mutations than the older ones. In fact, non-CpG and CpG mutations showed an almost perfect (R2 = 0.98) correlation for approximately 97% of the ortholog pairs. The correlation is independent of G + C content, recombination rate, and chromosomal location. Therefore, it likely reflects an intrinsic effect of CpGs, or mutations thereof, on non-CpG DNA rather than the joint manifestation of the chromosomal environment. The CpG effect is not uniform for all regions of non-CpG DNA. Therefore, the mutation rate of non-CpG DNA is contingent to varying extents on local CpG content. Aside from their implications for mutational mechanisms, these results indicate that a precise determination of a uniform genome-wide neutral mutation rate may not be attainable.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
15
|
Abstract
Our understanding of the details of mammalian meiotic recombination has recently advanced significantly. Sperm typing technologies, linkage studies, and computational inferences from population genetic data have together provided information in unprecedented detail about the location and activity of the sites of crossing-over in mice and humans. The results show that the vast majority of meiotic recombination events are localized to narrow DNA regions (hot spots) that constitute only a small fraction of the genome. The data also suggest that the molecular basis of hot spot activity is unlikely to be strictly determined by specific DNA sequence motifs in cis. Further molecular studies are needed to understand how hot spots originate, function and evolve.
Collapse
Affiliation(s)
- Norman Arnheim
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | | | | |
Collapse
|
16
|
Duret L, Arndt PF. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 2008; 4:e1000071. [PMID: 18464896 PMCID: PMC2346554 DOI: 10.1371/journal.pgen.1000071] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/11/2008] [Indexed: 01/19/2023] Open
Abstract
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp. Mammalian genomes show a very strong heterogeneity of base composition along chromosomes (the so-called isochores). The functional significance of these peculiar genomic landscapes is highly debated: do isochores confer some selective advantage, or are they simply the by-product of neutral evolutionary processes? To resolve this issue, we analyzed the pattern of substitution in the human genome by comparison with chimpanzee and macaque. We show that the evolution of base composition (GC-content) is essentially determined by the rate of recombination. This effect appears to be much stronger in male than in female germline, which rules out selective explanations for the evolution of isochores. We show that this impact of recombination is most probably a consequence of the process of biased gene conversion (BGC). This neutral process mimics the action of selection and can induce strong substitution hotspots within recombination hotspots, sometimes leading to the fixation of deleterious mutations. BGC appears to be one of the major factors driving genome evolution. It is therefore essential to take this process into account if we want to be able to interpret genome sequences.
Collapse
Affiliation(s)
- Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
- * E-mail: (LD); (PFA)
| | - Peter F. Arndt
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (LD); (PFA)
| |
Collapse
|
17
|
Karro JE, Peifer M, Hardison RC, Kollmann M, von Grünberg HH. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure. Mol Biol Evol 2007; 25:362-74. [PMID: 18042807 DOI: 10.1093/molbev/msm261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.
Collapse
Affiliation(s)
- J E Karro
- Department of Computer Science and Systems Analysis, Miami University, Ohio, USA.
| | | | | | | | | |
Collapse
|
18
|
LI MK, GU L, CHEN SS, DAI JQ, TAO SH. Evolution of the isochore structure in the scale of chromosome: insight from the mutation bias and fixation bias. J Evol Biol 2007; 21:173-182. [DOI: 10.1111/j.1420-9101.2007.01455.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Mank JE, Hultin-Rosenberg L, Axelsson E, Ellegren H. Rapid evolution of female-biased, but not male-biased, genes expressed in the avian brain. Mol Biol Evol 2007; 24:2698-706. [PMID: 17893399 DOI: 10.1093/molbev/msm208] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
20
|
Ren L, Gao G, Zhao D, Ding M, Luo J, Deng H. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation. Genome Biol 2007; 8:R35. [PMID: 17349061 PMCID: PMC1868930 DOI: 10.1186/gb-2007-8-3-r35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/08/2007] [Accepted: 03/12/2007] [Indexed: 11/26/2022] Open
Abstract
Developmental-stage-related patterns of gene expression correlate with codon usage and genomic GC content in stem cell hierarchies. Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis.
Collapse
Affiliation(s)
- Lichen Ren
- College of Life Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ge Gao
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Dongxin Zhao
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Mingxiao Ding
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Jingchu Luo
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Hongkui Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
21
|
Schmegner C, Hoegel J, Vogel W, Assum G. The rate, not the spectrum, of base pair substitutions changes at a GC-content transition in the human NF1 gene region: implications for the evolution of the mammalian genome structure. Genetics 2006; 175:421-8. [PMID: 17057231 PMCID: PMC1775011 DOI: 10.1534/genetics.106.064386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.
Collapse
|