1
|
Patlar B, Civetta A. Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster. BMC Ecol Evol 2022; 22:20. [PMID: 35196983 PMCID: PMC8867848 DOI: 10.1186/s12862-022-01975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background The rapid evolution of seminal fluid proteins (SFPs) has been suggested to be driven by adaptations to postcopulatory sexual selection (e.g. sperm competition). However, we have recently shown that most SFPs evolve rapidly under relaxed selective pressures. Given the role of SFPs in competition for fertilization phenotypes, like the ability to transfer and store sperm and the modulation of female receptivity and ovulation, the prevalence of selectively relaxed SFPs appears as a conundrum. One possible explanation is that selection on SFPs might be relaxed in terms of protein amino acid content, but adjustments of expression are essential for post-mating function. Interestingly, there is a general lack of systematic implementation of gene expression perturbation assays to monitor their effect on phenotypes related to sperm competition. Results We successfully manipulated the expression of 16 SFP encoding genes using tissue-specific knockdowns (KDs) and determined the effect of these genes’ perturbation on three important post-mating phenotypes: female refractoriness to remating, defensive (P1), and offensive (P2) sperm competitive abilities in Drosophila melanogaster. Our analyses show that KDs of tested SFP genes do not affect female refractoriness to remating and P2, however, most gene KDs significantly decreased P1. Moreover, KDs of SFP genes that are selectively constrained in terms of protein-coding sequence evolution have lower P1 than KDs of genes evolving under relaxed selection. Conclusions Our results suggest a more predominant role, than previously acknowledged, of variation in gene expression than coding sequence changes on sperm competitive ability in D. melanogaster. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01975-1.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
2
|
Banho CA, Mérel V, Oliveira TYK, Carareto CMA, Vieira C. Comparative transcriptomics between Drosophila mojavensis and D. arizonae reveals transgressive gene expression and underexpression of spermatogenesis-related genes in hybrid testes. Sci Rep 2021; 11:9844. [PMID: 33972659 PMCID: PMC8110761 DOI: 10.1038/s41598-021-89366-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Interspecific hybridization is a stressful condition that can lead to sterility and/or inviability through improper gene regulation in Drosophila species with a high divergence time. However, the extent of these abnormalities in hybrids of recently diverging species is not well known. Some studies have shown that in Drosophila, the mechanisms of postzygotic isolation may evolve more rapidly in males than in females and that the degree of viability and sterility is associated with the genetic distance between species. Here, we used transcriptomic comparisons between two Drosophila mojavensis subspecies and D. arizonae (repleta group, Drosophila) and identified greater differential gene expression in testes than in ovaries. We tested the hypothesis that the severity of the interspecies hybrid phenotype is associated with the degree of gene misregulation. We showed limited gene misregulation in fertile females and an increase in the amount of misregulation in males with more severe sterile phenotypes (motile vs. amotile sperm). In addition, for these hybrids, we identified candidate genes that were mostly associated with spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Cecilia A Banho
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, São Paulo State (SP), Brazil.,Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France
| | - Vincent Mérel
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France
| | - Thiago Y K Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Claudia M A Carareto
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, São Paulo State (SP), Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
3
|
Go AC, Civetta A. Hybrid Incompatibilities and Transgressive Gene Expression Between Two Closely Related Subspecies of Drosophila. Front Genet 2020; 11:599292. [PMID: 33362859 PMCID: PMC7758320 DOI: 10.3389/fgene.2020.599292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide assays of expression between species and their hybrids have identified genes that become either over- or underexpressed relative to the parental species (i.e., transgressive). Transgressive expression in hybrids is of interest because it highlights possible changes in gene regulation linked to hybrid dysfunction. Previous studies in Drosophila that used long-diverged species pairs with complete or nearly complete isolation (i.e., full sterility and partial inviability of hybrids) and high-levels of genome misregulation have found correlations between expression and coding sequence divergence. The work highlighted the possible effects of directional selection driving sequence divergence and transgressive expression. Whether the same is true for taxa at early stages of divergence that have only achieved partial isolation remains untested. Here, we reanalyze previously published genome expression data and available genome sequence reads from a pair of partially isolated subspecies of Drosophila to compare expression and sequence divergence. We find a significant correlation in rates of expression and sequence evolution, but no support for directional selection driving transgressive expression in hybrids. We find that most transgressive genes in hybrids show no differential expression between parental subspecies and used SNP data to explore the role of stabilizing selection through compensatory mutations. We also examine possible misregulation through cascade effects that could be driven by interacting gene networks or co-option of off-target cis-regulatory elements.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto Civetta
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Abstract
It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms' differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
5
|
Support for the Dominance Theory in Drosophila Transcriptomes. Genetics 2018; 210:703-718. [PMID: 30131345 PMCID: PMC6216581 DOI: 10.1534/genetics.118.301229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (e.g., genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.
Collapse
|
6
|
Barreto FS, Pereira RJ, Burton RS. Hybrid Dysfunction and Physiological Compensation in Gene Expression. Mol Biol Evol 2014; 32:613-22. [DOI: 10.1093/molbev/msu321] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Gomes S, Civetta A. Misregulation of spermatogenesis genes in Drosophila
hybrids is lineage-specific and driven by the combined effects of sterility and fast male regulatory divergence. J Evol Biol 2014; 27:1775-83. [DOI: 10.1111/jeb.12428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Gomes
- Department of Biology; University of Winnipeg; Winnipeg MB Canada
| | - A. Civetta
- Department of Biology; University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
8
|
Morán T, Fontdevila A. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture. J Hered 2014; 105:381-96. [PMID: 24489077 DOI: 10.1093/jhered/esu003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.
Collapse
Affiliation(s)
- Tomás Morán
- the Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
9
|
Hunt BG, Ometto L, Keller L, Goodisman MAD. Evolution at two levels in fire ants: the relationship between patterns of gene expression and protein sequence evolution. Mol Biol Evol 2012; 30:263-71. [PMID: 23051842 DOI: 10.1093/molbev/mss234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Variation in protein sequence and gene expression each contribute to phenotypic diversity, and may be subject to similar selective pressures. Eusocial insects are particularly useful for investigating the evolutionary link between protein sequence and condition-dependent patterns of gene expression because gene expression plays a central role in determining differences between eusocial insect sexes and castes. We investigated the relationship between protein coding sequence evolution and gene expression patterns in the fire ants Solenopsis invicta, S. richteri, and their hybrids to gain greater insight into how selection jointly operates on gene expression and coding sequence. We found that genes with high expression variability within castes and sexes were frequently differentially expressed between castes and sexes, as well as between species and hybrids. These results indicate that genes showing high variation in expression in one context also tend to show high variation in expression in other contexts. Our analyses further revealed that variation in both intra- and interspecific gene expression was positively associated with rate of protein sequence evolution in Solenopsis. This suggests that selective constraints on a gene operate both at the level of protein sequence and at the level of gene expression regulation. Overall, our study provides one of the strongest demonstrations that selective constraints mediate both protein sequence evolution and gene expression variability across different biological contexts and timescales.
Collapse
Affiliation(s)
- Brendan G Hunt
- School of Biology, Georgia Institute of Technology, USA.
| | | | | | | |
Collapse
|
10
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
11
|
Jagadeeshan S, Haerty W, Singh RS. Is speciation accompanied by rapid evolution? Insights from comparing reproductive and nonreproductive transcriptomes in Drosophila. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:595121. [PMID: 21869936 PMCID: PMC3159995 DOI: 10.4061/2011/595121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/04/2011] [Accepted: 05/19/2011] [Indexed: 12/18/2022]
Abstract
The tempo and mode of evolutionary change during speciation have remained contentious until recently. While much of the evidence claiming speciation is an abrupt and rapid process comes from fossil data, recent molecular phylogenetics show that the background of gradual evolution is often broken by accelerated rates of molecular evolution during speciation. However, what kinds of genes affect or are affected by speciation remains unexplored. Our analysis of 4843 protein-coding genes in five species of the Drosophila melanogaster subgroup shows that while ~70% of genes follow clock-like evolution, between 17-19.67% of loci show signatures of accelerated rates of evolution in recently formed species. These genes show 2-3-fold higher rates of substitution in recently diverged species compared to older species. This fraction of loci affects a diverse range of functions. Only a small proportion of reproductive genes experience speciation-related accelerated changes but many sex-and -reproduction related genes show an interesting pattern of persistent rapid evolution suggesting that sex-and-reproduction related genes are under constant selective pressures. The identification of loci associated with accelerated evolution allows us to address the mechanisms of rapid evolution and speciation, which in our study appears to be a combination of both selection and rapid demographical changes.
Collapse
Affiliation(s)
- Santosh Jagadeeshan
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4KI
- Smithsonian Tropical Research Institute, P. O. Box 0834-03092, Balboa, Ancón, Panama
| | - Wilfried Haerty
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4KI
| | - Rama S. Singh
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4KI
| |
Collapse
|
12
|
Araripe LO, Montenegro H, Lemos B, Hartl DL. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes". BMC Evol Biol 2010; 10:385. [PMID: 21144061 PMCID: PMC3020225 DOI: 10.1186/1471-2148-10-385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Results Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. Conclusions The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.
Collapse
Affiliation(s)
- Luciana O Araripe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
13
|
Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids. J Mol Evol 2010; 72:80-9. [PMID: 21079940 DOI: 10.1007/s00239-010-9404-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/25/2010] [Indexed: 12/23/2022]
Abstract
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.
Collapse
|
14
|
Hill-Burns EM, Clark AG. Functional regulatory divergence of the innate immune system in interspecific Drosophila hybrids. Mol Biol Evol 2010; 27:2596-605. [PMID: 20551040 DOI: 10.1093/molbev/msq146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In order to investigate divergence of immune regulation among Drosophila species, we have engaged in a study of innate immune function in F1 hybrids of Drosophila melanogaster and D. simulans. If pathways have diverged between the species such that incompatibilities have arisen between interacting components of the immune network, we expect the hybrids to display dysregulation of immune genes. We have quantified gene induction in hybrid and parental flies in response to bacterial infection. These results show that although the hybrids do not suffer widespread immune breakdown, they show significantly different regulation of many immune genes relative to the parents. We examine this divergence in terms of additivity and expression differences among genes, observing distinct patterns of dysregulation among functional groups within the pathways of the innate immune system. The functional groups most sensitive to misexpression in the hybrids are the downstream components of the network, indicative of some propagation of dysregulation throughout the immune pathways. Interestingly, this dysregulation does not appear to associate with phenotypic differences in bacterial load after infection in hybrids, possibly highlighting some robustness of function of the innate immune response to perturbations like hybridization.
Collapse
Affiliation(s)
- Erin M Hill-Burns
- Field of Genetics and Development, Department of Molecular Biology and Genetics, Cornell University.
| | | |
Collapse
|
15
|
Ekblom R, Balakrishnan CN, Burke T, Slate J. Digital gene expression analysis of the zebra finch genome. BMC Genomics 2010; 11:219. [PMID: 20359325 PMCID: PMC2996964 DOI: 10.1186/1471-2164-11-219] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | |
Collapse
|
16
|
Artieri CG, Singh RS. Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila. BMC Biol 2010; 8:26. [PMID: 20356354 PMCID: PMC2907589 DOI: 10.1186/1741-7007-8-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/31/2010] [Indexed: 11/10/2022] Open
Abstract
Background Speculation regarding the importance of changes in gene regulation in determining major phylogenetic patterns continues to accrue, despite a lack of broad-scale comparative studies examining how patterns of gene expression vary during development. Comparative transcriptional profiling of adult interspecific hybrids and their parental species has uncovered widespread divergence of the mechanisms controlling gene regulation, revealing incompatibilities that are masked in comparisons between the pure species. However, this has prompted the suggestion that misexpression in adult hybrids results from the downstream cascading effects of a subset of genes improperly regulated in early development. Results We sought to determine how gene expression diverges over development, as well as test the cascade hypothesis, by profiling expression in males of Drosophila melanogaster, D. sechellia, and D. simulans, as well as the D. simulans (♀) × D. sechellia (♂) male F1 hybrids, at four different developmental time points (3rd instar larval, early pupal, late pupal, and newly-emerged adult). Contrary to the cascade model of misexpression, we find that there is considerable stage-specific autonomy of regulatory breakdown in hybrids, with the larval and adult stages showing significantly more hybrid misexpression as compared to the pupal stage. However, comparisons between pure species indicate that genes expressed during earlier stages of development tend to be more conserved in terms of their level of expression than those expressed during later stages, suggesting that while Von Baer's famous law applies at both the level of nucleotide sequence and expression, it may not apply necessarily to the underlying overall regulatory network, which appears to diverge over the course of ontogeny and which can only be ascertained by combining divergent genomes in species hybrids. Conclusion Our results suggest that complex integration of regulatory circuits during morphogenesis may lead to it being more refractory to divergence of underlying gene regulatory mechanisms - more than that suggested by the conservation of gene expression levels between species during earlier stages. This provides support for a 'developmental hourglass' model of divergence of gene expression in Drosophila resulting in a highly conserved pupal stage.
Collapse
Affiliation(s)
- Carlo G Artieri
- Department of Biology, McMaster University, Hamilton, Ontario, L8S4K1, Canada
| | | |
Collapse
|
17
|
Catron DJ, Noor MAF. Gene expression disruptions of organism versus organ in Drosophila species hybrids. PLoS One 2008; 3:e3009. [PMID: 18714377 PMCID: PMC2500191 DOI: 10.1371/journal.pone.0003009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/31/2008] [Indexed: 01/18/2023] Open
Abstract
Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.
Collapse
Affiliation(s)
- Daniel J Catron
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | | |
Collapse
|