1
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
2
|
Vinueza-Espinosa DC, Cuesta-Aguirre DR, Malgosa A, Santos C. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Electrophoresis 2023; 44:1423-1434. [PMID: 37379235 DOI: 10.1002/elps.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.
Collapse
Affiliation(s)
- Diana C Vinueza-Espinosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel R Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
3
|
Françoso E, Zuntini AR, Ricardo PC, Araújo NS, Silva JPN, Brown MJF, Arias MC. The complete mitochondrial genome of Trigonisca nataliae (Hymenoptera, Apidae) assemblage reveals heteroplasmy in the control region. Gene 2023:147621. [PMID: 37419430 DOI: 10.1016/j.gene.2023.147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
The evolution of mitochondrial genomes in the stingless bees is surprisingly dynamic, making them a model system to understand mitogenome structure, function, and evolution. Out of the seven mitogenomes available in this group, five exhibit atypical characteristics, including extreme rearrangements, rapid evolution and complete mitogenome duplication. To further explore the mitogenome diversity in these bees, we utilized isolated mtDNA and Illumina sequencing to assemble the complete mitogenome of Trigonisca nataliae, a species found in Northern Brazil. The mitogenome of T. nataliae was highly conserved in gene content and structure when compared to Melipona species but diverged in the control region (CR). Using PCR amplification, cloning and Sanger sequencing, six different CR haplotypes, varying in size and content, were recovery. These findings indicate that heteroplasmy, where different mitochondrial haplotypes coexist within individuals, occurs in T. nataliae. Consequently, we argue that heteroplasmy might indeed be a common phenomenon in bees that could be associated with variations in mitogenome size and challenges encountered during the assembly process.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Natália Souza Araújo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
4
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
5
|
Alqaisi MHM, Ekka MM, Patel BC. Forensic evaluation of mitochondrial DNA heteroplasmy in Gujarat population, India. Ann Hum Biol 2022; 49:332-341. [PMID: 36343161 DOI: 10.1080/03014460.2022.2144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Owing to its high copy number and its small size, mtDNA analysis is the most reliable choice when biological materials from crime scenes are degraded or have mixed STR profiles. AIM To examine the occurrence of heteroplasmy along with its frequency and pattern in both HV1 and HV2 regions of the mtDNA among unrelated individuals from India. SUBJECTS AND METHODS Mitochondrial DNA control region [hypervariable region one (HV1) and hypervariable region two (HV2)] were analysed in blood and buccal tissues of 104 unrelated individuals from the Indian state of Gujarat. RESULTS A high frequency of point heteroplasmy (PH) and length heteroplasmy (LH) was revealed. PH was detected in 7.69% of the population, with a higher frequency observed in blood than in buccal samples. However, there were no statistically significant differences in PH between the two tissues (Chi-square = 0.552, p ≥ 0.05). A total of six PH positions were detected: three at HV1, and another three at HV2. The studied population showed 46.15% LH in the HV1 and HV2 regions of both tissues. The LH positions observed in the Gujarat population were the same as those previously reported at HV1 np16184-16193 and HV2 np303-315. CONCLUSIONS Our findings suggest that differences in the pattern of heteroplasmy found in different tissues can complicate the forensic analysis, on the other hand, the probability of a match between the questioned and reference samples increases when the heteroplasmy is identical in both tissues. Variability of PH among persons and even within tissues recommends analysing multiple tissue samples before drawing a conclusion in forensic mtDNA analyses.
Collapse
Affiliation(s)
- Mohammed H M Alqaisi
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Molina Madhulika Ekka
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Bhargav C Patel
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Pedigree derived mutation rate across the entire mitochondrial genome of the Norfolk Island population. Sci Rep 2022; 12:6827. [PMID: 35473946 PMCID: PMC9042960 DOI: 10.1038/s41598-022-10530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Estimates of mutation rates for various regions of the human mitochondrial genome (mtGenome) vary widely, depending on whether they are inferred using a phylogenetic approach or obtained directly from pedigrees. Traditionally, only the control region, or small portions of the coding region have been targeted for analysis due to the cost and effort required to produce whole mtGenome Sanger profiles. Here, we report one of the first pedigree derived mutation rates for the entire human mtGenome. The entire mtGenome from 225 individuals originating from Norfolk Island was analysed to estimate the pedigree derived mutation rate and compared against published mutation rates. These individuals were from 45 maternal lineages spanning 345 generational events. Mutation rates for various portions of the mtGenome were calculated. Nine mutations (including two transitions and seven cases of heteroplasmy) were observed, resulting in a rate of 0.058 mutations/site/million years (95% CI 0.031-0.108). These mutation rates are approximately 16 times higher than estimates derived from phylogenetic analysis with heteroplasmy detected in 13 samples (n = 225, 5.8% individuals). Providing one of the first pedigree derived estimates for the entire mtGenome, this study provides a better understanding of human mtGenome evolution and has relevance to many research fields, including medicine, anthropology and forensics.
Collapse
|
7
|
Schwartz JH. Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:126-151. [PMID: 33818247 DOI: 10.1080/24701394.2021.1899165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tenets underlying the use of mtDNA in phylogenetic and systematic analyses are strict maternal inheritance, clonality, homoplasmy, and difference due to mutation: that is, there are species-specific mtDNA sequences and phylogenetic reconstruction is a matter of comparing these sequences and inferring closeness of relatedness from the degree of sequence similarity. Yet, how mtDNA behavior became so defined is mysterious. Even though early studies of fertilization demonstrated for most animals that not only the head, but the sperm's tail and mitochondria-bearing midpiece penetrate the egg, the opposite - only the head enters the egg - became fact, and mtDNA conceived as maternally transmitted. When midpiece/tail penetration was realized as true, the conceptions 'strict maternal inheritance', etc., and their application to evolutionary endeavors, did not change. Yet there is mounting evidence of paternal mtDNA transmission, paternal and maternal combination, intracellular recombination, and intra- and intercellular heteroplasmy. Clearly, these phenomena impact the systematic and phylogenetic analysis of mtDNA sequences.
Collapse
Affiliation(s)
- Jeffrey H Schwartz
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Aljasmi FA, Vijayan R, Sudalaimuthuasari N, Souid AK, Karuvantevida N, Almaskari R, Mohammed Abdul Kader H, Kundu B, Michel Hazzouri K, Amiri KMA. Genomic Landscape of the Mitochondrial Genome in the United Arab Emirates Native Population. Genes (Basel) 2020; 11:genes11080876. [PMID: 32752197 PMCID: PMC7464197 DOI: 10.3390/genes11080876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
In order to assess the genomic landscape of the United Arab Emirates (UAE) mitogenome, we sequenced and analyzed the complete genomes of 232 Emirate females mitochondrial DNA (mtDNA) within and compared those to Africa. We investigated the prevalence of haplogroups, genetic variation, heteroplasmy, and demography among the UAE native population with diverse ethnicity and relatively high degree of consanguinity. We identified 968 mtDNA variants and high-resolution 15 haplogroups. Our results show that the UAE population received enough gene flow from Africa represented by the haplogroups L, U6, and M1, and that 16.8% of the population has an eastern provenance, depicted by the U haplogroup and the M Indian haplogroup (12%), whereas western Eurasian and Asian haplogroups (R, J, and K) represent 11 to 15%. Interestingly, we found an ancient migration present through the descendant of L (N1 and X) and other sub-haplogroups (L2a1d and L4) and (L3x1b), which is one of the oldest evolutionary histories outside of Africa. Our demographic analysis shows no population structure among populations, with low diversity and no population differentiation. In addition, we show that the transmission of mtDNA in the UAE population is under purifying selection with hints of diversifying selection on ATP8 gene. Last, our results show a population bottleneck, which coincides with the Western European contact (1400 ybp). Our study of the UAE mitogenomes suggest that several maternal lineage migratory episodes liking African–Asian corridors occurred since the first modern human emerges out of Africa.
Collapse
Affiliation(s)
- Fatma A Aljasmi
- Pediatric Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Ranjit Vijayan
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Abdul-Kader Souid
- Pediatric Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Raja Almaskari
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | | | - Biduth Kundu
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| | - Khaled M A Amiri
- Biology Department, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, UAE
| |
Collapse
|
9
|
The role of control region mitochondrial DNA mutations in cardiovascular disease: stroke and myocardial infarction. Sci Rep 2020; 10:2766. [PMID: 32066781 PMCID: PMC7026394 DOI: 10.1038/s41598-020-59631-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies associated certain type of cardiovascular disease (CVD) with specific mitochondrial DNA (mtDNA) defects, mainly driven by the central role of mitochondria in cellular metabolism. Considering the importance of the control region (CR) on the regulation of the mtDNA gene expression, the aim of the present study was to investigate the role of mtDNA CR mutations in two CVDs: stroke and myocardial infarction (MI). MtDNA CR mutations (both fixed and in heteroplasmy) were analysed in two demographically-matched case-control samples, using 154 stroke cases, 211 MI cases and their corresponding control individuals. Significant differences were found, reporting mutations m.16145 G > A and m.16311 T > C as potential genetic risk factors for stroke (conditional logistic regression: p = 0.038 and p = 0.018, respectively), whereas the m.72 T > C, m.73 A > G and m.16356 T > C mutations could act as possible beneficial genetic factors for MI (conditional logistic regression: p = 0.001, p = 0.009 and p = 0.016, respectively). Furthermore, our findings also showed a high percentage of point heteroplasmy in MI controls (logistic regression: p = 0.046; OR = 0.209, 95% CI [0.045-0.972]). These results demonstrate the possible role of mtDNA mutations in the CR on the pathogenesis of stroke and MI, and show the importance of including this regulatory region in genetic association studies.
Collapse
|
10
|
Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 60:3943-3951. [PMID: 31546260 PMCID: PMC6759036 DOI: 10.1167/iovs.19-27602] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Diabetes causes dysfunction in the retinal mitochondria and increases base mismatches in their DNA (mtDNA). The enzyme responsible for repairing the base mismatches, MutL homolog 1 (Mlh1), is compromised. Diabetes also favors many epigenetic modifications and activates DNA methylation machinery, and Mlh1 has a CpG-rich promoter. Our aim is to identify the molecular mechanism responsible for impaired mtDNA mismatch repair in the pathogenesis of diabetic retinopathy. Methods Human retinal endothelial cells, incubated in 20 mM glucose, were analyzed for mitochondrial localization of Mlh1 by an immunofluorescence technique, Mlh1 promoter DNA methylation by the methylated DNA capture method, and the binding of Dnmt1 and transcriptional factor Sp1 by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice, with or without Dnmt inhibitors, and from human donors with diabetic retinopathy. Results Compared with cells in 5 mM glucose, high glucose decreased Mlh1 mitochondrial localization, and its promoter DNA was hypermethylated with increased Dnmt-1 binding and decreased Sp1 binding. Dnmt inhibitors attenuated Mlh1 promoter hypermethylation and prevented a decrease in its gene transcripts and an increase in mtDNA mismatches. The administration of Dnmt inhibitors in mice ameliorated a diabetes-induced increase in Mlh1 promoter hypermethylation and a decrease in its gene transcripts. Similar decreases in Mlh1 gene transcripts and its promoter DNA hypermethylation were observed in human donors. Conclusions Thus, as a result of the epigenetic modifications of the Mlh1 promoter, its transcription is decreased, and decreased mitochondrial accumulation fails to repair mtDNA mismatches. Therapies targeted to halt DNA methylation have the potential to prevent/halt mtDNA damage and the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Rakesh Radhakrishnan
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
11
|
Sensitivity of mitochondrial DNA heteroplasmy detection using Next Generation Sequencing. Mitochondrion 2020; 50:88-93. [DOI: 10.1016/j.mito.2019.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
|
12
|
Nakanishi H, Fujii K, Nakahara H, Mizuno N, Sekiguchi K, Yoneyama K, Hara M, Takada A, Saito K. Estimation of the number of contributors to mixed samples of DNA by mitochondrial DNA analyses using massively parallel sequencing. Int J Legal Med 2019; 134:101-109. [PMID: 31713676 DOI: 10.1007/s00414-019-02182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
We evaluated whether the number of contributors to mixed DNA samples can be estimated by analyzing the D-loop of mitochondrial DNA using massively parallel sequencing. The A- (positions 16,209-16,400) and B- (positions 30-284) amplicons in hypervariable regions 1 and 2, respectively, were sequenced using MiSeq with 2 × 251 cycles. Sequence extraction and trimming were performed using CLC Genomics Workbench 11 and the number of observed haplotypes was counted for each amplicon type using Microsoft Excel. The haplotype ratios were calculated by dividing the number of counted reads of the corresponding haplotype by the total number of sequence reads. Haplotypes that were over the threshold (5%) were defined as positive haplotypes. The number of larger positive haplotypes in either of the two amplicon types was defined as the number of contributors. Samples were collected from seven individuals. Seventeen mixed samples were prepared by mixing DNA from two to five contributors at various ratios. The number of contributors was correctly estimated from almost all of the mixed samples containing equal amounts of DNA from two to five people. In mixed samples of two or three people, the minor components were detected down to a ratio of 20:1 or 8:2:1. However, heteroplasmy, base deletions, and sharing of the same haplotypes caused incorrect estimations of the number of contributors. Although this method still has room for improvement, it may be useful for estimating the number of contributors in a mixed sample, as it does not rely on forensic mathematics.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Koji Fujii
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Hiroaki Nakahara
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Natsuko Mizuno
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Kazumasa Sekiguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Katsumi Yoneyama
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
13
|
Sylvester C, Krishna MS, Rao JS, Chandrasekar A. Allele frequencies of mitochondrial DNA HVR III 514–524 (CA)n dinucleotide repeats in the Urali Kuruman tribal population of South India. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Li YX, Gao YL, He XL, Cao SX. Exploration of mtDNA control region sequences in Chinese Tibetan Mastiffs. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:800-804. [PMID: 28756720 DOI: 10.1080/24701394.2017.1357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The control region of mitochondrial DNA (mtDNA) was obtained from 40 purebred Chinese Tibetan Mastiffs (TMs). Sequence structure and genetic diversity were analyzed, and a phylogenetic tree was constructed. The TM mtDNA control region was composed of ETAS (extended termination associated sequences), CD (a central domain) and CSBs (conserved sequenced blocks) and sequence length showed some diversity, which was mainly caused by the number of 10 nucleotide repeat units [5'-GTA CAC GT (G/A) C-3'] between CSB I and CSB II, which ranged from 27 to 35 among individuals. Seventy-five polymorphic sites were identified, which defined 37 haplotypes; the haplotype diversity was 0.990, and the nucleotide diversity was 1.201. Based on the control region sequences, Chinese TMs were divided into three categories, which were consistent with the origin and geographical classification of TMs. Phylogenetic analysis of 538-bp HVR-I sequences revealed that TMs were most closely related to Labrador Retrievers.
Collapse
Affiliation(s)
- Yin-Xia Li
- a Institute of Animal Science , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China.,b Key Laboratory of Animal Breeding and Reproduction , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China
| | - Yi-Long Gao
- c Policedog Technology Key Laboratory of the Ministry of Public Security , Nanjing Policedog Research Institute of the Ministry of Public Security , Nanjing , Jiangsu , China
| | - Xing-Liang He
- c Policedog Technology Key Laboratory of the Ministry of Public Security , Nanjing Policedog Research Institute of the Ministry of Public Security , Nanjing , Jiangsu , China
| | - Shao-Xian Cao
- a Institute of Animal Science , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China.,b Key Laboratory of Animal Breeding and Reproduction , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China
| |
Collapse
|
15
|
Bhatti S, Aslam Khan M, Abbas S, Attimonelli M, Gonzalez GR, Aydin HH, de Souza EMS. Problems in Mitochondrial DNA forensics: while interpreting length heteroplasmy conundrum of various Sindhi and Baluchi ethnic groups of Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:501-510. [DOI: 10.1080/24701394.2017.1310853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shahzad Bhatti
- Human genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
- IMBB, The University of Lahore, Lahore, Pakistan
| | - Muhammad Aslam Khan
- Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Sana Abbas
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Marcella Attimonelli
- Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | - Erica Martinha Silva de Souza
- Nacional de Pesquisa, Manaus Programa de Pós Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia Av. André Araújo, Manaus, Aleixo, Brazil
| |
Collapse
|
16
|
Ren Z, Chen H, Yang X, Zhang C. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial hypervariable region I. J Genet 2017; 96:119-125. [PMID: 28360396 DOI: 10.1007/s12041-017-0753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, the number of Tibetan mastiffs, which is a precious germplasm resource and cultural heritage, is decreasing sharply. Therefore, the genetic diversity of Tibetan mastiffs needs to be studied to clarify its phylogenetics relationships and lay the foundation for resource protection, rational development and utilization of Tibetan mastiffs. We sequenced hypervariable region I of mitochondrial DNA (mtDNA) of 110 individuals from Tibet region and Gansu province. A total of 12 polymorphic sites were identified which defined eight haplotypes of which H4 and H8 were unique to Tibetan population with H8 being identified first. The haplotype diversity (Hd: 0.808), nucleotide diversity (Pi: 0.603%), the average number of nucleotide difference (K: 3.917) of Tibetan mastiffs from Gansu were higher than those from Tibet region (Hd: 0.794; Pi: 0.589%; K: 3.831), which revealed higher genetic diversity in Gansu. In terms of total population, the genetic variation was low. The median-joining network and phylogenetic tree based on the mtDNA hypervariable region I showed that Tibetan mastiffs originated from grey wolves, as the other domestic dogs and had different history of maternal origin. The mismatch distribution analysis and neutrality tests indicated that Tibetan mastiffs were in genetic equilibrium or in a population decline.
Collapse
Affiliation(s)
- Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | | | | | | |
Collapse
|
17
|
Just RS, Scheible MK, Fast SA, Sturk-Andreaggi K, Röck AW, Bush JM, Higginbotham JL, Peck MA, Ring JD, Huber GE, Xavier C, Strobl C, Lyons EA, Diegoli TM, Bodner M, Fendt L, Kralj P, Nagl S, Niederwieser D, Zimmermann B, Parson W, Irwin JA. Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci Int Genet 2015; 14:141-55. [DOI: 10.1016/j.fsigen.2014.09.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/26/2014] [Indexed: 11/26/2022]
|
18
|
Verscheure S, Backeljau T, Desmyter S. Length heteroplasmy of the polyC-polyT-polyC stretch in the dog mtDNA control region. Int J Legal Med 2014; 129:927-35. [PMID: 25394743 DOI: 10.1007/s00414-014-1106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Previously, the mitochondrial control region of 214 Belgian dogs was sequenced. Analysis of this data indicated length heteroplasmy of the polyT stretch in the polyC-polyT-polyC stretch from positions 16661 to 16674. Nine polyC-polyT-polyC haplotype combinations were observed, consisting of seven major haplotypes (highest signal intensity) combined with minor haplotypes (lower signal intensity) one T shorter than the major haplotype in all but three dogs. The longer the polyT stretch, the smaller was the difference in signal intensity between the major and minor haplotype peaks. Additional sequencing, cloning, and PCR trap experiments were performed to further study the intra-individual variation of this mitochondrial DNA (mtDNA) region. Cloning experiments demonstrated that the proportion of clones displaying the minor haplotypes also increased with the length of the polyT stretch. Clone amplification showed that in vitro polymerase errors might contribute to the length heteroplasmy of polyT stretches with at least 10 Ts. Although major and minor polyC-polyT-polyC haplotypes did not differ intra-individually within and between tissues in this study, interpretation of polyT stretch variation should be handled with care in forensic casework.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, 1120, Brussels, Belgium,
| | | | | |
Collapse
|
19
|
Zhao Q, Kang Y, Pu Y, Niu L, Guan W, He X, Zhang H, Lim H, Ma Y, Zhong T. Primer effect in the detection of mtDNA heteroplasmy: insights from horse Cytochrome b gene. ACTA ACUST UNITED AC 2014; 26:178-81. [PMID: 24409928 DOI: 10.3109/19401736.2013.855924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heteroplasmy, the presence of bi-allelic mtDNA types within an individual, has been previously detected in the D-loop region and Cytochrome b gene (Cytb) of mitochondrial DNA using PCR-RFLP. However, heteroplasmy was absent in thousands of equine mtDNA sequences deposited in GenBank. To address whether heteroplasmy widely exists in mitochondria of Chinese indigenous horses, we generated the data set of the target sites in Cytb region with Sanger sequencing and PCR-RFLP method as well. In this study, 23 heteroplasmic individuals were detected in 430 Chinese local horses. Both site and length heteroplasmy were identified in horse Cytb, especially in Xinihe and Ujumqin breeds. Our data provide evidence that the forward and reverse primers seem to produce a similar approximation to the proportion of mutation base call. However, locations of primers affected the proper detection of mtDNA heteroplasmy. The data obtained in this study highlight the importance of the primers in the accurate detection of heteroplasmy.
Collapse
Affiliation(s)
- Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One 2013; 8:e74636. [PMID: 24098342 PMCID: PMC3788774 DOI: 10.1371/journal.pone.0074636] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.
Collapse
|
21
|
Xiong H, Barker SC, Burger TD, Raoult D, Shao R. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing. PLoS One 2013; 8:e73329. [PMID: 24058467 PMCID: PMC3772822 DOI: 10.1371/journal.pone.0073329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023] Open
Abstract
The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.
Collapse
Affiliation(s)
- Haoyu Xiong
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen C. Barker
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas D. Burger
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR CNRS 6236 IRD 198, Faculté de Mé decine, Mé diterranée Infection, Aix-Marseille Université, Marseille, France
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
22
|
Calatayud M, Ramos A, Santos C, Aluja MP. Primer effect in the detection of mitochondrial DNA point heteroplasmy by automated sequencing. ACTA ACUST UNITED AC 2013; 24:303-11. [PMID: 23350969 DOI: 10.3109/19401736.2012.760072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The correct detection of mitochondrial DNA (mtDNA) heteroplasmy by automated sequencing presents methodological constraints. The main goals of this study are to investigate the effect of sense and distance of primers in heteroplasmy detection and to test if there are differences in the accurate determination of heteroplasmy involving transitions or transversions. A gradient of the heteroplasmy levels was generated for mtDNA positions 9477 (transition G/A) and 15,452 (transversion C/A). Amplification and subsequent sequencing with forward and reverse primers, situated at 550 and 150 bp from the heteroplasmic positions, were performed. Our data provide evidence that there is a significant difference between the use of forward and reverse primers. The forward primer is the primer that seems to give a better approximation to the real proportion of the variants. No significant differences were found concerning the distance at which the sequencing primers were placed neither between the analysis of transitions and transversions. The data collected in this study are a starting point that allows to glimpse the importance of the sequencing primers in the accurate detection of point heteroplasmy, providing additional insight into the overall automated sequencing strategy.
Collapse
Affiliation(s)
- Marta Calatayud
- Unitat d'Antropologia Biològica, Departament BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Dudu A, Georgescu SE, Berrebi P, Costache M. Site heteroplasmy in the mitochondrial cytochrome b gene of the sterlet sturgeon Acipenser ruthenus. Genet Mol Biol 2012; 35:886-91. [PMID: 23271951 PMCID: PMC3526098 DOI: 10.1590/s1415-47572012005000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 07/05/2012] [Indexed: 11/24/2022] Open
Abstract
Sturgeons are fish species with a complex biology. They are also characterized by complex aspects including polyploidization and easiness of hybridization. As with most of the Ponto-Caspian sturgeons, the populations of Acipenser ruthenus from the Danube have declined drastically during the last decades. This is the first report on mitochondrial point heteroplasmy in the cytochrome b gene of this species. The 1141 bp sequence of the cytb gene in wild sterlet sturgeon individuals from the Lower Danube was determined, and site heteroplasmy evidenced in three of the 30 specimens collected. Two nucleotide sequences were identified in these heteroplasmic individuals. The majority of the heteroplasmic sites are synonymous and do not modify the sequence of amino acids in cytochrome B protein. To date, several cases of point heteroplasmy have been reported in animals, mostly due to paternal leakage of mtDNA. The presence of specific point heteroplasmic sites might be interesting for a possible correlation with genetically distinct groups in the Danube River.
Collapse
Affiliation(s)
- Andreea Dudu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | | | | | | |
Collapse
|
24
|
A twin study of mitochondrial DNA polymorphisms shows that heteroplasmy at multiple sites is associated with mtDNA variant 16093 but not with zygosity. PLoS One 2011; 6:e22332. [PMID: 21857921 PMCID: PMC3153933 DOI: 10.1371/journal.pone.0022332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/21/2011] [Indexed: 12/03/2022] Open
Abstract
The mitochondrial theory of ageing proposes that damage to mitochondria and diminished mitochondrial DNA (mtDNA) repair are major contributors to cellular dysfunction and age-related diseases. We investigate the prevalence of heteroplasmy in the mtDNA control region in buccal swab and blood derived samples for 178 women from the TwinsUK cohort (41 DZ pair 39 MZ pairs, 18 singletons, mean age 57.5 range 28–82) and its relationship to age, BMI and fasting insulin and glucose serum levels. The overall estimated prevalence of heteroplasmy for both tissues in the control region measured for 37 sites was 17%. The prevalence of heteroplasmy was higher among the older half of the study subjects than in the younger half (23% vs 10% p<0.03), primarily reflecting the increase in the prevalence of a heteroplasmic dinucleotide CA repeat in variable region II (VRII) with age. The VRII 523–524 heteroplasmic site (heteroplasmic in 25 subjects) was also associated with a decrease in BMI. In addition, concordance rates for common heteroplasmy were observed to be near complete for both dizygotic (DZ = 94%) and monozygotic twin pairs (MZ = 100%), consistent with previous reports that suggest variation in heteroplasmy rates between generations are determined by bottlenecks in maternal transmission of mitochondria. Differences in the prevalence of heteroplasmy were observed overall between samples derived from buccal swabs (19%) and blood (15%, p<0.04). These were particularly marked at position 16093 of hypervariable region I (HVI, 7% vs 0%, respectively, p<4×10−11). The presence of the C allele at position 16093 in blood was associated with the presence of heteroplasmy in buccal swabs at this position (p = 3.5×10−14) and also at VRII (p = 2×10−4) suggesting a possible predisposing role for this site in the accumulation of heteroplasmy. Our data indicate that BMI is potentially associated with control region heteroplasmy.
Collapse
|
25
|
Fendt L, Röck A, Zimmermann B, Bodner M, Thye T, Tschentscher F, Owusu-Dabo E, Göbel TMK, Schneider PM, Parson W. MtDNA diversity of Ghana: a forensic and phylogeographic view. Forensic Sci Int Genet 2011; 6:244-9. [PMID: 21723214 PMCID: PMC3314991 DOI: 10.1016/j.fsigen.2011.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/13/2011] [Accepted: 05/26/2011] [Indexed: 11/03/2022]
Abstract
West Africa is characterized by a migration history spanning more than 150,000 years. Climate changes but also political circumstances were responsible for several early but also recent population movements that shaped the West African mitochondrial landscape. The aim of the study was to establish a Ghanaian mtDNA dataset for forensic purposes and to investigate the diversity of the Ghanaian population sample with respect to surrounding populations. We sequenced full mitochondrial control regions of 193 Akan people from Ghana and excluded two apparently close maternally related individuals due to preceding kinship testing. The remaining dataset comprising 191 sequences was applied as etalon for quasi-median network analysis and was subsequently combined with 99 additional control region sequences from surrounding West African countries. All sequences were incorporated into the EMPOP database enriching the severely underrepresented African mtDNA pool. For phylogeographic considerations, the Ghanaian haplotypes were compared to those of 19 neighboring populations comprising a total number of 6198 HVS1 haplotypes. We found extensive genetic admixture between the Ghanaian lineages and those from adjacent populations diminishing with geographical distance. The extent of genetic admixture reflects the long but also recent history of migration waves within West Africa mainly caused by changing environmental conditions. Also, evidence for potential socio-economical influences such as trade routes is provided by the occurrence of U6b and U6d sequences found in Dubai but also in Tunisia leading to the African West Coast via Mauritania and Senegal but also via Niger, Nigeria to Cameroon.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pliss L, Brakmanis A, Ranka R, Elferts D, Krumina A, Baumanis V. The link between mitochondrial DNA hypervariable segment I heteroplasmy and ageing among genetically unrelated Latvians. Exp Gerontol 2011; 46:560-8. [PMID: 21377516 DOI: 10.1016/j.exger.2011.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 11/17/2022]
Abstract
Various studies have demonstrated that mitochondrial DNA (mtDNA) heteroplasmy tends to increase with age and that the observed frequency of heteroplasmy among populations mostly depends on the way it is measured. Therefore, we investigated age-related association on the presence of mtDNA heteroplasmy within the hypervariable segment 1 (HVS-I) in a selected study group. The study group consisted of 300 maternally unrelated Latvians ranging in age from 18 to over 90 years. To determine the optimal method for mtDNA heteroplasmy detection, three approaches were used: (i) SURVEYOR Mutation Detection Kit, (ii) sequencing and (iii) denaturing gradient-gel electrophoresis (DGGE). Among the studied individuals, 30.3% were found to be heteroplasmic. The distribution of heteroplasmy statistically significantly increased with individuals' age (17%; 95% confidence interval [CI] 0.095-0.244 in the 18-40 year age group vs. 39%; [CI] 0.294-0.487 in the >90 year age group). Heteroplasmy occurred in a total of 21 different positions within HVS-I, and was the most frequent at fast-mutated positions 16189, 16304 and 16311. The results indicate that heteroplasmy in HVS-I is relatively common and occurs in a broad spectrum of sites. The above is supported by evidence to eventual increase of the probability of heteroplasmy with age due to specific mitochondrial haplogroup background.
Collapse
Affiliation(s)
- Liana Pliss
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, LV-1067, Latvia.
| | | | | | | | | | | |
Collapse
|
27
|
Vollmer NL, Viricel A, Wilcox L, Katherine Moore M, Rosel PE. The occurrence of mtDNA heteroplasmy in multiple cetacean species. Curr Genet 2011; 57:115-31. [DOI: 10.1007/s00294-010-0331-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
|
28
|
Bosley TM, Abu-Amero KK. Assessing mitochondrial DNA nucleotide changes in spontaneous optic neuropathies. Ophthalmic Genet 2010; 31:163-72. [DOI: 10.3109/13816810.2010.514015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Berger C, Hatzer-Grubwieser P, Hohoff C, Parson W. Evaluating sequence-derived mtDNA length heteroplasmy by amplicon size analysis. Forensic Sci Int Genet 2010; 5:142-5. [PMID: 21067985 PMCID: PMC3064993 DOI: 10.1016/j.fsigen.2010.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Length heteroplasmy (LH) in mitochondrial (mt)DNA is usually observed in homopolymeric tracts and manifest as mixture of various length variants. The generally used difference-coded annotation to report mtDNA haplotypes does not express the degree of LH variation present in a sample, even more so, it is sometimes difficult to establish which length variants are present and clearly distinguishable from background noise. It has therefore become routine practice for some researchers to call the dominant type, the "major molecule", which represents the LH variant that is most abundant in a DNA extract. In the majority of cases a clear single dominant variant can be identified. However, in some samples this interpretation is difficult, i.e. when (almost) equally quantitative LH variants are present or when multiple sequencing primers result in the presentation of different dominant types. To better understand those cases we designed amplicon sizing assays for the five most relevant LH regions in the mtDNA control region (around ntps 16,189, 310, 460, 573, and the AC-repeat between 514 and 524) to determine the ratio of the LH variants by fluorescence based amplicon sizing assays. For difficult LH constellations derived by Sanger sequencing (with Big Dye terminators) these assays mostly gave clear and unambiguous results. In the vast majority of cases we found agreement between the results of the sequence and amplicon analyses and propose this alternative method in difficult cases.
Collapse
Affiliation(s)
- C Berger
- Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
30
|
Klütsch CFC, Seppälä EH, Uhlén M, Lohi H, Savolainen P. Segregation of point mutation heteroplasmy in the control region of dog mtDNA studied systematically in deep generation pedigrees. Int J Legal Med 2010; 125:527-35. [PMID: 21049272 PMCID: PMC3115052 DOI: 10.1007/s00414-010-0524-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/18/2010] [Indexed: 12/04/2022]
Abstract
Heteroplasmy, the presence of two or more variants in an organism, may render mitochondrial DNA (mtDNA)-based individual identification challenging in forensic analysis. However, the variation of heteroplasmic proportions and the segregation of heteroplasmic variants through generations and within families have not been systematically described at a large scale in animals such as the domestic dog. Therefore, we performed the largest study to date in domestic dogs and screened a 582-bp-long fragment of the mtDNA control region in 180 individuals in 58 pedigrees for signs of heteroplasmy. We identified three pedigrees (5.17%) with heteroplasmic point mutations. To follow the segregation of the point mutations, we then analyzed 131 samples from these three independent pedigrees and found significant differences in heteroplasmy between generations and among siblings. Frequently (10% of cases), the proportion of one base changed from 0–10% to 80–90% (as judged from Sanger electropherograms) between generations and varied to a similar extent among siblings. We included also a literature review of heteroplasmic and potential mutational hot spot positions in the studied region which showed that all heteroplasmic positions appear to be mutational hot spots. Thus, although heteroplasmy may be used to increase the significance of a match in forensic case work, it may also cause erroneous exclusion of related individuals because of sharp switches from one state to the other within a single generation or among siblings especially in the presented mutational hot spots.
Collapse
Affiliation(s)
- Cornelya F C Klütsch
- KTH-Royal Institute of Technology, Gene Technology, Roslagstullsbacken 21, 10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Santos C, Fregel R, Cabrera VM, González AM, Larruga JM, Lima M. Mitochondrial DNA patterns in the Macaronesia islands: Variation within and among archipelagos. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 141:610-9. [PMID: 19927277 DOI: 10.1002/ajpa.21180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macaronesia covers four Atlantic archipelagos: the Azores, Madeira, the Canary Islands, and the Cape Verde islands. When discovered by Europeans in the 15th century, only the Canaries were inhabited. Historical reports highlight the impact of Iberians on settlement in Macaronesia. Although important differences in their settlement are documented, its influence on their genetic structures and relationships has yet to be ascertained. In this study, the hypervariable region I (HVRI) sequence and coding region polymorphisms of mitochondrial DNA (mtDNA) in 623 individuals from the Azores (120) and Canary Islands (503) were analyzed. Combined with published data, these give a total of 1,542 haplotypes from Macaronesia and 1,067 from the Iberian Peninsula. The results obtained indicate that Cape Verde is the most distinctive archipelago, with an mtDNA pool composed almost exclusively of African lineages. However, the other archipelagos present an mtDNA profile dominated by the presence of West-Eurasian mtDNA haplogroups with African lineages present in varying proportions. Moreover, no signs of integration of typical Canarian U6 lineages in the other archipelagos were detected. The four Macaronesia archipelagos currently have differentiated genetic profiles, and the Azores present the highest intra-archipelago differentiation and the lowest values of diversity. The analyses performed show that the present-day genetic profile of the Macaronesian archipelagos was mainly determined by the initial process of settlement and further microdifferentiation probably as a consequence of the small population size of some islands. Moreover, contacts between archipelagos seem to have had a low impact on the mtDNA genetic pool of each archipelago.
Collapse
Affiliation(s)
- Cristina Santos
- Unitat Antropologia Biològica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Kim K, Brenner CH, Mair VH, Lee KH, Kim JH, Gelegdorj E, Batbold N, Song YC, Yun HW, Chang EJ, Lkhagvasuren G, Bazarragchaa M, Park AJ, Lim I, Hong YP, Kim W, Chung SI, Kim DJ, Chung YH, Kim SS, Lee WB, Kim KY. A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 142:429-40. [PMID: 20091844 DOI: 10.1002/ajpa.21242] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo-European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo-European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y-SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo-Europeans and ancient East-West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society.
Collapse
Affiliation(s)
- Kijeong Kim
- Institute for Medical Sciences, College of Medicine, Chung-Ang University, Seoul, South Korea, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010; 87:237-49. [PMID: 20696290 PMCID: PMC2917713 DOI: 10.1016/j.ajhg.2010.07.014] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/29/2022] Open
Abstract
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.
Collapse
Affiliation(s)
- Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Anna Schönberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Michael Schaefer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Roland Schroeder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Ivane Nasidze
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| |
Collapse
|
34
|
Forster L, Forster P, Gurney SMR, Spencer M, Huang C, Röhl A, Brinkmann B. Evaluating length heteroplasmy in the human mitochondrial DNA control region. Int J Legal Med 2010; 124:133-42. [PMID: 19937256 DOI: 10.1007/s00414-009-0385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/16/2009] [Indexed: 11/28/2022]
Abstract
We present allelic data for three known and one new C-tract in the human mitochondrial DNA (mtDNA) control region, and we measure intergenerational mutation rates at such C-tracts. In detail, in a sample of 1,172 mtDNA sequences, we demonstrate the existence of an instability threshold of eight consecutive cytosines, at and above which the phenomenon of length heteroplasmy arises. To determine mutation rates, we draw on mtDNA sequences in up to four generations of 248 pedigrees for families living in high or low-radiation environmental conditions. The high-radiation sample gives the most conservative (fastest) mutation rate likely to be encountered in any forensic context. We find that the C-tract mutation rate is up to 6% per generation, and we observe an excess of cytosine gains over losses. Case studies and guidelines for evaluating mtDNA heteroplasmy are provided.
Collapse
Affiliation(s)
- Lucy Forster
- Institute of Legal Medicine, University of Münster, Röntgenstrasse 23, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010; 464:610-4. [PMID: 20200521 PMCID: PMC3176451 DOI: 10.1038/nature08802] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/06/2010] [Indexed: 12/16/2022]
Abstract
The presence of hundreds of copies of mitochondrial (mt) DNA in each human cell poses a challenge for complete characterization of mtDNA genomes by conventional sequencing technologies1. Here, we describe digital sequencing of mtDNA genomes using massively parallel sequencing-by-synthesis. Though the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants among different tissues of the same individual varied considerably. In addition to the variants identified in normal tissues, cancer cells harbored additional homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide new insights into the nature and variability of mtDNA sequences and have intriguing implications for mitochondrial processes during embryogenesis, cancer biomarker development, and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.
Collapse
|
36
|
Niederstätter H, Parson W. Fluorescent duplex allele-specific PCR and amplicon melting for rapid homogeneous mtDNA haplogroup H screening and sensitive mixture detection. PLoS One 2009; 4:e8374. [PMID: 20020064 PMCID: PMC2793010 DOI: 10.1371/journal.pone.0008374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/23/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND For large scale studies aiming at a better understanding of mitochondrial DNA (mtDNA), sequence variation in particular mt haplogroups (hgs) and population structure, reliable low-cost high-throughput genotyping assays are needed. Furthermore, methods facilitating sensitive mixture detection and relative quantification of allele proportions are indispensable for the study of heteroplasmy, mitochondrial sequence evolution, and mitochondrial disorders. Here the properties of a homogeneous competitive duplex allele specific PCR (ARMS) assay were scrutinized in the light of these requirements. METHODOLOGY/PRINCIPAL FINDINGS A duplex ARMS assay amplifying either the ancestral mtDNA 2706G allele (non-hg H samples) or the derived 7028C allele (hg H samples) in the presence of SYBR Green fluorescent reporter dye was developed and characterized. Product detection, allele calling, and hg inference were based on the amplicon-characteristic melting-point temperatures obtained with on-line post-PCR fluorescent dissociation curve analysis (DCA). The analytical window of the assay covered at least 5 orders of magnitude of template DNA input with a detection limit in the low picogram range of genomic DNA. A set of forensically relevant test specimens was analyzed successfully. The presence of mtDNA mixtures was detected over a broad range of input DNA amounts and mixture ratios, and the estimation of allele proportions in samples with known total mtDNA content was feasible with limitations. A qualified DNA analyst successfully analyzed approximately 2,200 DNA extracts within three regular working days, without using robotic lab-equipment. By performing the amplification on-line, the assay also facilitated absolute mtDNA quantification. CONCLUSIONS Although this assay was developed just for a particular purpose, the approach is general in that it is potentially suitable in a broad variety of assay-layouts for many other applications, including the analysis of mixtures. Homogeneous ARMS-DCA is a valuable tool for large-volume studies targeting small numbers of single nucleotide polymorphisms (SNPs).
Collapse
|
37
|
Ramos A, Santos C, Alvarez L, Nogués R, Aluja MP. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis 2009; 30:1587-93. [PMID: 19350543 DOI: 10.1002/elps.200800601] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.
Collapse
Affiliation(s)
- Amanda Ramos
- Departament BABVE, Unitat d'Antropologia Biològica, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Hall TA, Sannes-Lowery KA, McCurdy LD, Fisher C, Anderson T, Henthorne A, Gioeni L, Budowle B, Hofstadler SA. Base Composition Profiling of Human Mitochondrial DNA Using Polymerase Chain Reaction and Direct Automated Electrospray Ionization Mass Spectrometry. Anal Chem 2009; 81:7515-26. [DOI: 10.1021/ac901222y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas A. Hall
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Kristin A. Sannes-Lowery
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Leslie D. McCurdy
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Constance Fisher
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Theodore Anderson
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Almira Henthorne
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Lora Gioeni
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Bruce Budowle
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Steven A. Hofstadler
- Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
39
|
Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 2009; 68:516-27. [PMID: 19407924 DOI: 10.1007/s00239-009-9227-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/24/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Instances of point and length heteroplasmy in the mitochondrial DNA control region were compiled and analyzed from over 5,000 global human population samples. These data represent observations from a large and broad population sample, representing nearly 20 global populations. As expected, length heteroplasmy was frequently observed in the HVI, HVII and HVIII C-stretches. Length heteroplasmy was also observed in the AC dinucleotide repeat region, as well as other locations. Point heteroplasmy was detected in approximately 6% of all samples, and while the vast majority of heteroplasmic samples comprised two molecules differing at a single position, samples exhibiting two and three mixed positions were also observed in this data set. In general, the sites at which heteroplasmy was most commonly observed correlated with reported control region mutational hotspots. However, for some sites, observations of heteroplasmy did not mirror established mutation rate data, suggesting the action of other mechanisms, both selective and neutral. Interestingly, these data indicate that the frequency of heteroplasmy differs between particular populations, perhaps reflecting variable mutation rates among different mtDNA lineages and/or artifacts of particular population groups. The results presented here contribute to our general understanding of mitochondrial DNA control region heteroplasmy and provide additional empirical information on the mechanisms contributing to mtDNA control region mutation and evolution.
Collapse
|