Ni M, Shu W, Bo X, Wang S, Li S. Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes.
BMC Evol Biol 2010;
10:329. [PMID:
20977776 PMCID:
PMC2984420 DOI:
10.1186/1471-2148-10-329]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/27/2010] [Indexed: 01/22/2023] Open
Abstract
Background
Previous studies have shown that microRNA precursors (pre-miRNAs) have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA) and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear.
Results
We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability.
Conclusions
We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were also detected in conserved pre-miRNAs.
Collapse