1
|
Banse P, Luiselli J, Parsons DP, Grohens T, Foley M, Trujillo L, Rouzaud‐Cornabas J, Knibbe C, Beslon G. Forward-in-time simulation of chromosomal rearrangements: The invisible backbone that sustains long-term adaptation. Mol Ecol 2024; 33:e17234. [PMID: 38078552 PMCID: PMC11628651 DOI: 10.1111/mec.17234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/11/2024]
Abstract
While chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution. Here, we propose Aevol, a forward-in-time simulation platform specifically dedicated to unravelling the evolutionary significance of chromosomal rearrangements (CR) compared to local mutations (LM). Using the platform, we evolve populations of organisms in four conditions characterized by an increasing diversity of mutational operators-from substitutions alone to a mix of substitutions, InDels and CR-but with a constant global mutational rate. Despite being almost invisible in the phylogeny owing to the scarcity of their fixation in the lineages, we show that CR make a decisive contribution to the evolutionary dynamics by comparing the outcome in these four conditions. As expected, chromosomal rearrangements allow fast expansion of the gene repertoire through gene duplication, but they also reduce the effect of diminishing-returns epistasis, hence sustaining adaptation on the long-run. At last, we show that chromosomal rearrangements tightly regulate the size of the genome through indirect selection for reproductive robustness. Overall, these results confirm the need to improve our theoretical understanding of the contribution of chromosomal rearrangements to evolution and show that dedicated platforms like Aevol can efficiently contribute to this agenda.
Collapse
Affiliation(s)
- Paul Banse
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Juliette Luiselli
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - David P. Parsons
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Théotime Grohens
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marco Foley
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Leonardo Trujillo
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Jonathan Rouzaud‐Cornabas
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Carole Knibbe
- Université de Lyon, INSA‐Lyon, Inria, Université Claude Bernard Lyon 1, Inserm, INRAE, CarMeN laboratoryPierre‐BéniteFrance
| | - Guillaume Beslon
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| |
Collapse
|
2
|
Liu J, Jaffe AL, Chen L, Bor B, Banfield JF. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria. mBio 2023; 14:e0176623. [PMID: 38009957 PMCID: PMC10746230 DOI: 10.1128/mbio.01766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Here, we profiled putative phages of Saccharibacteria, which are of particular importance as Saccharibacteria influence some human oral diseases. We additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative genetic code. Among the phages identified in this study, some are targeted by spacers from both CPR and non-CPR bacteria and others by both bacteria that use the standard genetic code as well as bacteria that use an alternative genetic code. These findings represent new insights into possible phage replication strategies and have relevance for phage therapies that seek to manipulate microbiomes containing CPR bacteria.
Collapse
Affiliation(s)
- Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Batbileg Bor
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Biba D, Klink G, Bazykin G. Pairs of mutually compensatory frameshifting mutations contribute to protein evolution. Mol Biol Evol 2022; 39:6524633. [PMID: 35137193 PMCID: PMC8935012 DOI: 10.1093/molbev/msac031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insertions and deletions of lengths not divisible by 3 in protein-coding sequences cause frameshifts that usually induce premature stop codons and may carry a high fitness cost. However, this cost can be partially offset by a second compensatory indel restoring the reading frame. The role of such pairs of compensatory frameshifting mutations (pCFMs) in evolution has not been studied systematically. Here, we use whole-genome alignments of protein-coding genes of 100 vertebrate species, and of 122 insect species, studying the prevalence of pCFMs in their divergence. We detect a total of 624 candidate pCFM genes; six of them pass stringent quality filtering, including three human genes: RAB36, ARHGAP6, and NCR3LG1. In some instances, amino acid substitutions closely predating or following pCFMs restored the biochemical similarity of the frameshifted segment to the ancestral amino acid sequence, possibly reducing or negating the fitness cost of the pCFM. Typically, however, the biochemical similarity of the frameshifted sequence to the ancestral one was not higher than the similarity of a random sequence of a protein-coding gene to its frameshifted version, indicating that pCFMs can uncover radically novel regions of protein space. In total, pCFMs represent an appreciable and previously overlooked source of novel variation in amino acid sequences.
Collapse
Affiliation(s)
- Dmitry Biba
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia - Moscow, Oblast
| | - Galya Klink
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, 127051, Russia
| | - Georgii Bazykin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia - Moscow, Oblast.,Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevitch Institute), Moscow, 127051, Russia
| |
Collapse
|
4
|
Kosinski LJ, Masel J. Readthrough Errors Purge Deleterious Cryptic Sequences, Facilitating the Birth of Coding Sequences. Mol Biol Evol 2021; 37:1761-1774. [PMID: 32101291 DOI: 10.1093/molbev/msaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
De novo protein-coding innovations sometimes emerge from ancestrally noncoding DNA, despite the expectation that translating random sequences is overwhelmingly likely to be deleterious. The "preadapting selection" hypothesis claims that emergence is facilitated by prior, low-level translation of noncoding sequences via molecular errors. It predicts that selection on polypeptides translated only in error is strong enough to matter and is strongest when erroneous expression is high. To test this hypothesis, we examined noncoding sequences located downstream of stop codons (i.e., those potentially translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of "fragile" proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. Among the remainder, sequences showing evidence of readthrough translation, as assessed by ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting the preadapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are robust to controlling for the fact that stronger selection also reduces the length of C-terminal extensions. These findings indicate that selection acts on 3' UTRs in Saccharomyces cerevisiae to purge potentially deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more readthrough errors.
Collapse
Affiliation(s)
- Luke J Kosinski
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
5
|
Zheng J, Guo N, Wagner A. Selection enhances protein evolvability by increasing mutational robustness and foldability. Science 2020; 370:370/6521/eabb5962. [DOI: 10.1126/science.abb5962] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Natural selection can promote or hinder a population’s evolvability—the ability to evolve new and adaptive phenotypes—but the underlying mechanisms are poorly understood. To examine how the strength of selection affects evolvability, we subjected populations of yellow fluorescent protein to directed evolution under different selection regimes and then evolved them toward the new phenotype of green fluorescence. Populations under strong selection for the yellow phenotype evolved the green phenotype most rapidly. They did so by accumulating mutations that increase both robustness to mutations and foldability. Under weak selection, neofunctionalizing mutations rose to higher frequency at first, but more frequent deleterious mutations undermined their eventual success. Our experiments show how selection can enhance evolvability by enhancing robustness and create the conditions necessary for evolutionary success.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Ning Guo
- Zwirnereistrasse 11, Wallisellen, Zurich, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
6
|
Weber M, Burgos R, Yus E, Yang J, Lluch‐Senar M, Serrano L. Impact of C-terminal amino acid composition on protein expression in bacteria. Mol Syst Biol 2020; 16:e9208. [PMID: 32449593 PMCID: PMC7246954 DOI: 10.15252/msb.20199208] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
The C-terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C-terminal sequence and levels of protein expression remains unknown. Here, we identified C-terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C-terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jae‐Seong Yang
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
7
|
Ho AT, Hurst LD. In eubacteria, unlike eukaryotes, there is no evidence for selection favouring fail-safe 3' additional stop codons. PLoS Genet 2019; 15:e1008386. [PMID: 31527909 PMCID: PMC6764699 DOI: 10.1371/journal.pgen.1008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Errors throughout gene expression are likely deleterious, hence genomes are under selection to ameliorate their consequences. Additional stop codons (ASCs) are in-frame nonsense ‘codons’ downstream of the primary stop which may be read by translational machinery should the primary stop have been accidentally read through. Prior evidence in several eukaryotes suggests that ASCs are selected to prevent potentially-deleterious consequences of read-through. We extend this evidence showing that enrichment of ASCs is common but not universal for single cell eukaryotes. By contrast, there is limited evidence as to whether the same is true in other taxa. Here, we provide the first systematic test of the hypothesis that ASCs act as a fail-safe mechanism in eubacteria, a group with high read-through rates. Contra to the predictions of the hypothesis we find: there is paucity, not enrichment, of ASCs downstream; substitutions that degrade stops are more frequent in-frame than out-of-frame in 3’ sequence; highly expressed genes are no more likely to have ASCs than lowly expressed genes; usage of the leakiest primary stop (TGA) in highly expressed genes does not predict ASC enrichment even compared to usage of non-leaky stops (TAA) in lowly expressed genes, beyond downstream codon +1. Any effect at the codon immediately proximal to the primary stop can be accounted for by a preference for a T/U residue immediately following the stop, although if anything, TT- and TC- starting codons are preferred. We conclude that there is no compelling evidence for ASC selection in eubacteria. This presents an unusual case in which the same error could be solved by the same mechanism in eukaryotes and prokaryotes but is not. We discuss two possible explanations: that, owing to the absence of nonsense mediated decay, bacteria may solve read-through via gene truncation and in eukaryotes certain prion states cause raised read-through rates. In all organisms, gene expression is error-prone. One such error, translational read-through, occurs where the primary stop codon of an expressed gene is missed by the translational machinery. Failure to terminate is likely to be costly, hence genomes are under selection to prevent this from happening. One proposed error-proofing strategy involves in-frame proximal additional stop codons (ASCs) which may act as a ‘fail-safe’ mechanism by providing another opportunity for translation to terminate. There is evidence for ASC enrichment in several eukaryotes. We extend this evidence showing it to be common but not universal in single celled eukaryotes. However, the situation in bacteria is poorly understood, despite bacteria having high read-through rates. Here, we test the fail-safe hypothesis within a broad range of bacteria. To our surprise, we find that not only are ASCs not enriched, but they may even be selected against. This provides evidence for an unusual circumstance where eukaryotes and prokaryotes could solve the same problem the same way but don’t. What are we to make of this? We suggest that if read-through is the problem, ASCs are not necessarily the expected solution. Owing to the absence of nonsense-mediated decay, a process that makes gene truncation in eukaryotes less viable, we propose bacteria may rescue a leaky stop by mutation that creates a new stop upstream. Alternatively, raised read-through rates in some particular conditions in eukaryotes might explain the difference.
Collapse
Affiliation(s)
- Alexander T. Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Laurence D. Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
8
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
9
|
Drift Barriers to Quality Control When Genes Are Expressed at Different Levels. Genetics 2016; 205:397-407. [PMID: 27838629 DOI: 10.1534/genetics.116.192567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Gene expression is imperfect, sometimes leading to toxic products. Solutions take two forms: globally reducing error rates, or ensuring that the consequences of erroneous expression are relatively harmless. The latter is optimal, but because it must evolve independently at so many loci, it is subject to a stringent "drift barrier"-a limit to how weak the effects of a deleterious mutation s can be, while still being effectively purged by selection, expressed in terms of the population size N of an idealized population such that purging requires s < -1/N In previous work, only large populations evolved the optimal local solution, small populations instead evolved globally low error rates, and intermediate populations were bistable, with either solution possible. Here, we take into consideration the fact that the effectiveness of purging varies among loci, because of variation in gene expression level, and variation in the intrinsic vulnerabilities of different gene products to error. The previously found dichotomy between the two kinds of solution breaks down, replaced by a gradual transition as a function of population size. In the extreme case of a small enough population, selection fails to maintain even the global solution against deleterious mutations, explaining the nonmonotonic relationship between effective population size and transcriptional error rate that was recently observed in experiments on Escherichia coli, Caenorhabditis elegans, and Buchnera aphidicola.
Collapse
|
10
|
Siena E, D’Aurizio R, Riley D, Tettelin H, Guidotti S, Torricelli G, Moxon ER, Medini D. In-silico prediction and deep-DNA sequencing validation indicate phase variation in 115 Neisseria meningitidis genes. BMC Genomics 2016; 17:843. [PMID: 27793092 PMCID: PMC5084427 DOI: 10.1186/s12864-016-3185-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/22/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The Neisseria meningitidis (Nm) chromosome shows a high abundance of simple sequence DNA repeats (SSRs) that undergo stochastic, reversible mutations at high frequency. This mechanism is reflected in an extensive phenotypic diversity that facilitates Nm adaptation to dynamic environmental changes. To date, phase-variable phenotypes mediated by SSRs variation have been experimentally confirmed for 26 Nm genes. RESULTS Here we present a population-scale comparative genomic analysis that identified 277 genes and classified them into 52 strong, 60 moderate and 165 weak candidates for phase variation. Deep-coverage DNA sequencing of single colonies grown overnight under non-selective conditions confirmed the presence of high-frequency, stochastic variation in 115 of them, providing circumstantial evidence for their phase variability. We confirmed previous observations of a predominance of variable SSRs within genes for components located on the cell surface or DNA metabolism. However, in addition we identified an unexpectedly broad spectrum of other metabolic functions, and most of the variable SSRs were predicted to induce phenotypic changes by modulating gene expression at a transcriptional level or by producing different protein isoforms rather than mediating on/off translational switching through frameshifts. Investigation of the evolutionary history of SSR contingency loci revealed that these loci were inherited from a Nm ancestor, evolved independently within Nm, or were acquired by Nm through lateral DNA exchange. CONCLUSIONS Overall, our results have identified a broader and qualitatively different phenotypic diversification of SSRs-mediated stochastic variation than previously documented, including its impact on central Nm metabolism.
Collapse
Affiliation(s)
| | - Romina D’Aurizio
- GSK Vaccines, 53100 Siena, Italy
- Present address: Institute of Informatics and Telematics and Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - David Riley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Personal Genome Disgnostics inc., Baltimore, MD 21224 USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | | | | | - E. Richard Moxon
- Medical Sciences Division, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | | |
Collapse
|
11
|
Thiyagarajan K, Vitali F, Tolaini V, Galeffi P, Cantale C, Vikram P, Singh S, De Rossi P, Nobili C, Procacci S, Del Fiore A, Antonini A, Presenti O, Brunori A. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat. PLoS One 2016; 11:e0151187. [PMID: 26990297 PMCID: PMC4798664 DOI: 10.1371/journal.pone.0151187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/24/2016] [Indexed: 01/05/2023] Open
Abstract
Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.
Collapse
Affiliation(s)
- Karthikeyan Thiyagarajan
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
- Bioversity International, 00054, Maccarese (Fiumicino), Italy
| | - Fabio Vitali
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Valentina Tolaini
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Patrizia Galeffi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Cristina Cantale
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Prashant Vikram
- Genetic Resource Program, International Center for Maize and Wheat Improvement, El Batan, Texcoco, Mexico
| | - Sukhwinder Singh
- Genetic Resource Program, International Center for Maize and Wheat Improvement, El Batan, Texcoco, Mexico
| | - Patrizia De Rossi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Chiara Nobili
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Silvia Procacci
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Antonella Del Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Alessandro Antonini
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Ombretta Presenti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| | - Andrea Brunori
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), UTAGRI- INN, Via Anguillarese, 301, 00123 Rome, Italy
| |
Collapse
|
12
|
Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:786861. [PMID: 26114113 PMCID: PMC4465819 DOI: 10.1155/2015/786861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/02/2014] [Indexed: 12/16/2022]
Abstract
Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.
Collapse
|
13
|
Andreatta ME, Levine JA, Foy SG, Guzman LD, Kosinski LJ, Cordes MHJ, Masel J. The Recent De Novo Origin of Protein C-Termini. Genome Biol Evol 2015; 7:1686-701. [PMID: 26002864 PMCID: PMC4494051 DOI: 10.1093/gbe/evv098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein-coding sequences can arise either from duplication and divergence of existing sequences, or de novo from noncoding DNA. Unfortunately, recently evolved de novo genes can be hard to distinguish from false positives, making their study difficult. Here, we study a more tractable version of the process of conversion of noncoding sequence into coding: the co-option of short segments of noncoding sequence into the C-termini of existing proteins via the loss of a stop codon. Because we study recent additions to potentially old genes, we are able to apply a variety of stringent quality filters to our annotations of what is a true protein-coding gene, discarding the putative proteins of unknown function that are typical of recent fully de novo genes. We identify 54 examples of C-terminal extensions in Saccharomyces and 28 in Drosophila, all of them recent enough to still be polymorphic. We find one putative gene fusion that turns out, on close inspection, to be the product of replicated assembly errors, further highlighting the issue of false positives in the study of rare events. Four of the Saccharomyces C-terminal extensions (to ADH1, ARP8, TPM2, and PIS1) that survived our quality filters are predicted to lead to significant modification of a protein domain structure.
Collapse
Affiliation(s)
- Matthew E Andreatta
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Aegis Sciences, Nashville, TN
| | - Joshua A Levine
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Scott G Foy
- Department of Ecology & Evolutionary Biology, University of Arizona
| | - Lynette D Guzman
- Department of Ecology & Evolutionary Biology, University of Arizona Present address: Program in Mathematics Education, Michigan State University, MI
| | - Luke J Kosinski
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona
| | | | - Joanna Masel
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
14
|
Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci Rep 2015; 5:9699. [PMID: 25982672 PMCID: PMC4434889 DOI: 10.1038/srep09699] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli is a widely used host organism for recombinant technology, and the bacterial incorporation of non-natural amino acids promises the efficient synthesis of proteins with novel structures and properties. In the present study, we developed E. coli strains in which the UAG codon was reserved for non-natural amino acids, without compromising the reproductive strength of the host cells. Ninety-five of the 273 UAG stop codons were replaced synonymously in the genome of E. coli BL21(DE3), by exploiting the oligonucleotide-mediated base-mismatch-repair mechanism. This genomic modification allowed the safe elimination of the UAG-recognizing cellular component (RF-1), thus leaving the remaining 178 UAG codons with no specific molecule recognizing them. The resulting strain B-95.ΔA grew as vigorously as BL21(DE3) in rich medium at 25-42°C, and its derivative B-95.ΔAΔfabR was better adapted to low temperatures and minimal media than B-95.ΔA. UAG was reassigned to synthetic amino acids by expressing the specific pairs of UAG-reading tRNA and aminoacyl-tRNA synthetase. Due to the preserved growth vigor, the B-95.ΔA strains showed superior productivities for hirudin molecules sulfonated on a particular tyrosine residue, and the Fab fragments of Herceptin containing multiple azido groups.
Collapse
|
15
|
Wong TY, Schwartzbach SD. Protein Mis-Termination Initiates Genetic Diseases, Cancers, and Restricts Bacterial Genome Expansion. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:255-285. [PMID: 26087060 DOI: 10.1080/10590501.2015.1053461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein termination is an important cellular process. Protein termination relies on the stop-codons in the mRNA interacting properly with the releasing factors on the ribosome. One third of inherited diseases, including cancers, are associated with the mutation of the stop-codons. Many pathogens and viruses are able to manipulate their stop-codons to express their virulence. The influence of stop-codons is not limited to the primary reading frame of the genes. Stop-codons in the second and third reading frames are referred as premature stop signals (PSC). Stop-codons and PSCs together are collectively referred as stop-signals. The ratios of the stop-signals (referred as translation stop-signals ratio or TSSR) of genetically related bacteria, despite their great differences in gene contents, are much alike. This nearly identical Genomic-TSSR value of genetically related bacteria may suggest that bacterial genome expansion is limited by their unique stop-signals bias. We review the protein termination process and the different types of stop-codon mutation in plants, animals, microbes, and viruses, with special emphasis on the role of PSCs in directing bacterial evolution in their natural environments. Knowing the limit of genomic boundary could facilitate the formulation of new strategies in controlling the spread of diseases and combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Tit-Yee Wong
- a Department of Biological Sciences , University of Memphis , Memphis , Tennessee , USA
| | | |
Collapse
|
16
|
Huvet M, Stumpf MPH. Overlapping genes: a window on gene evolvability. BMC Genomics 2014; 15:721. [PMID: 25159814 PMCID: PMC4161906 DOI: 10.1186/1471-2164-15-721] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 08/18/2014] [Indexed: 11/13/2022] Open
Abstract
Background The forces underlying genome architecture and organization are still only poorly understood in detail. Overlapping genes (genes partially or entirely overlapping) represent a genomic feature that is shared widely across biological organisms ranging from viruses to multi-cellular organisms. In bacteria, a third of the annotated genes are involved in an overlap. Despite the widespread nature of this arrangement, its evolutionary origins and biological ramifications have so far eluded explanation. Results Here we present a comparative approach using information from 699 bacterial genomes that sheds light on the evolutionary dynamics of overlapping genes. We show that these structures exhibit high levels of plasticity. Conclusions We propose a simple model allowing us to explain the observed properties of overlapping genes based on the importance of initiation and termination of transcriptional and translational processes. We believe that taking into account the processes leading to the expression of protein-coding genes hold the key to the understanding of overlapping genes structures.
Collapse
Affiliation(s)
- Maxime Huvet
- Theoretical Systems Biology Group, Department of life sciences, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
17
|
Williams LE, Wernegreen JJ. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont. Genome Biol Evol 2013; 5:599-605. [PMID: 23475937 PMCID: PMC3622351 DOI: 10.1093/gbe/evt033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.
Collapse
Affiliation(s)
- Laura E Williams
- Institute for Genome Sciences and Policy, Duke University, NC, USA
| | | |
Collapse
|
18
|
Abstract
Cryptic genetic sequences have attenuated effects on phenotypes. In the classic view, relaxed selection allows cryptic genetic diversity to build up across individuals in a population, providing alleles that may later contribute to adaptation when co-opted--e.g., following a mutation increasing expression from a low, attenuated baseline. This view is described, for example, by the metaphor of the spread of a population across a neutral network in genotype space. As an alternative view, consider the fact that most phenotypic traits are affected by multiple sequences, including cryptic ones. Even in a strictly clonal population, the co-option of cryptic sequences at different loci may have different phenotypic effects and offer the population multiple adaptive possibilities. Here, we model the evolution of quantitative phenotypic characters encoded by cryptic sequences and compare the relative contributions of genetic diversity and of variation across sites to the phenotypic potential of a population. We show that most of the phenotypic variation accessible through co-option would exist even in populations with no polymorphism. This is made possible by a history of compensatory evolution, whereby the phenotypic effect of a cryptic mutation at one site was balanced by mutations elsewhere in the genome, leading to a diversity of cryptic effect sizes across sites rather than across individuals. Cryptic sequences might accelerate adaptation and facilitate large phenotypic changes even in the absence of genetic diversity, as traditionally defined in terms of alternative alleles.
Collapse
|
19
|
Bolshoy A, Tatarinova T. Methods of combinatorial optimization to reveal factors affecting gene length. Bioinform Biol Insights 2012; 6:317-27. [PMID: 23300345 PMCID: PMC3528112 DOI: 10.4137/bbi.s10525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.
Collapse
Affiliation(s)
- Alexander Bolshoy
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel. ; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
20
|
Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK. Stop codons in bacteria are not selectively equivalent. Biol Direct 2012; 7:30. [PMID: 22974057 PMCID: PMC3549826 DOI: 10.1186/1745-6150-7-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes. RESULTS We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG. CONCLUSIONS Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications.
Collapse
Affiliation(s)
- Inna S Povolotskaya
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) and UPF, 88 Dr, Aiguader, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
21
|
Lin WH, Kussell E. Evolutionary pressures on simple sequence repeats in prokaryotic coding regions. Nucleic Acids Res 2011; 40:2399-413. [PMID: 22123746 PMCID: PMC3315296 DOI: 10.1093/nar/gkr1078] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Simple sequence repeats (SSRs) are indel mutational hotspots in genomes. In prokaryotes, SSR loci can cause phase variation, a microbial survival strategy that relies on stochastic, reversible on–off switching of gene activity. By analyzing multiple strains of 42 fully sequenced prokaryotic species, we measure the relative variability and density distribution of SSRs in coding regions. We demonstrate that repeat type strongly influences indel mutation rates, and that the most mutable types are most strongly avoided across genomes. We thoroughly characterize SSR density and variability as a function of N→C position along protein sequences. Using codon-shuffling algorithms that preserve amino acid sequence, we assess evolutionary pressures on SSRs. We find that coding sequences suppress repeats in the middle of proteins, and enrich repeats near termini, yielding U-shaped SSR density curves. We show that for many species this characteristic shape can be attributed to purely biophysical constraints of protein structure. In multiple cases, however, particularly in certain pathogenic bacteria, we observe over enrichment of SSRs near protein N-termini significantly beyond expectation based on structural constraints. This increases the probability that frameshifts result in non-functional proteins, revealing that these species may evolutionarily tune SSR positions in coding regions to facilitate phase variation.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Center for Genomics and Systems Biology, Department of Biology and Department of Physics, New York University, New York, NY 10003, USA
| | - Edo Kussell
- Center for Genomics and Systems Biology, Department of Biology and Department of Physics, New York University, New York, NY 10003, USA
- *To whom correspondence should be addressed. Tel: +1 212 998 7663;
| |
Collapse
|
22
|
Wilson BA, Masel J. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol 2011; 3:1245-52. [PMID: 21948395 PMCID: PMC3209793 DOI: 10.1093/gbe/evr099] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There have been recent surprising reports that whole genes can evolve de novo from noncoding sequences. This would be extraordinary if the noncoding sequences were random with respect to amino acid identity. However, if the noncoding sequences were previously translated at low rates, with the most strongly deleterious cryptic polypeptides purged by selection, then de novo gene origination would be more plausible. Here we analyze Saccharomyces cerevisiae data on noncoding transcripts found in association with ribosomes. We find many such transcripts. Although their average ribosomal densities are lower than those of protein-coding genes, a significant proportion of noncoding transcripts nevertheless have ribosomal densities comparable to those of coding genes. Most show increased ribosomal association in response to starvation, as has been previously reported for other noncoding sequences such as untranslated regions and introns. In rich media, ribosomal association is correlated with start codons but is not usually consistent and contiguous beyond that, suggesting that translation occurs only at low rates. One transcript contains a 28-codon open reading frame, which we name RDT1, which shows evidence of translation, and may be a new protein-coding gene that originated de novo from noncoding sequence. But the bulk of the ribosomal association cannot be attributed to unannotated protein-coding genes. Our primary finding of extensive ribosome association shows that a necessary precondition for selective purging is met, making de novo gene evolution more plausible. Our analysis is also proof of principle of the utility of ribosomal profiling data for the purpose of gene annotation.
Collapse
Affiliation(s)
- Benjamin A Wilson
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | |
Collapse
|
23
|
Rodas PI, Trombert AN, Mora GC. A holin remnant protein encoded by STY1365 is involved in envelope stability of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 2011; 321:58-66. [PMID: 21592194 DOI: 10.1111/j.1574-6968.2011.02310.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We characterized STY1365, a small ORF of Salmonella enterica serovar Typhi. This 174-bp ORF encodes a putative product of 57 amino acid residues with a premature stop codon. Nevertheless, bioinformatic analyses revealed that the predicted product of STY1365 has similarity to putative holin genes of Escherichia coli and bacteriophage ΦP27. STY1365 showed a high-level expression at the early log phase and a small corresponding protein product was detected mainly in the inner membrane fraction. Cloning of STY1365 in pSU19 mid-copy-vector produced retardation in S. Typhi growth, increased cell permeability to crystal violet and altered the inner membrane protein profile. Similar results were obtained when STY1365 was induced with isopropyl-β-d-thio-galactoside in pCC1(™) single-copy vector. Our results support the fact that S. Typhi STY1365 encodes a holin remnant protein that is involved in the stability of the bacterial envelope.
Collapse
Affiliation(s)
- Paula I Rodas
- Programa de Doctorado en Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|